Classic Computer Science Problems in Java
eBook - ePub

Classic Computer Science Problems in Java

David Kopec

Condividi libro
  1. 264 pagine
  2. English
  3. ePUB (disponibile sull'app)
  4. Disponibile su iOS e Android
eBook - ePub

Classic Computer Science Problems in Java

David Kopec

Dettagli del libro
Anteprima del libro
Indice dei contenuti
Citazioni

Informazioni sul libro

Sharpen your coding skills by exploring established computer science problems! Classic Computer Science Problems in Java challenges you with time-tested scenarios and algorithms. Summary
Sharpen your coding skills by exploring established computer science problems! Classic Computer Science Problems in Java challenges you with time-tested scenarios and algorithms. You'll work through a series of exercises based in computer science fundamentals that are designed to improve your software development abilities, improve your understanding of artificial intelligence, and even prepare you to ace an interview. As you work through examples in search, clustering, graphs, and more, you'll remember important things you've forgotten and discover classic solutions to your "new" problems! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology
Whatever software development problem you're facing, odds are someone has already uncovered a solution. This book collects the most useful solutions devised, guiding you through a variety of challenges and tried-and-true problem-solving techniques. The principles and algorithms presented here are guaranteed to save you countless hours in project after project. About the book
Classic Computer Science Problems in Java is a master class in computer programming designed around 55 exercises that have been used in computer science classrooms for years. You'll work through hands-on examples as you explore core algorithms, constraint problems, AI applications, and much more. What's inside Recursion, memoization, and bit manipulation
Search, graph, and genetic algorithms
Constraint-satisfaction problems
K-means clustering, neural networks, and adversarial search About the reader
For intermediate Java programmers. About the author
David Kopec is an assistant professor of Computer Science and Innovation at Champlain College in Burlington, Vermont. Table of Contents 1 Small problems
2 Search problems
3 Constraint-satisfaction problems
4 Graph problems
5 Genetic algorithms
6 K-means clustering
7 Fairly simple neural networks
8 Adversarial search
9 Miscellaneous problems
10 Interview with Brian Goetz

Domande frequenti

Come faccio ad annullare l'abbonamento?
È semplicissimo: basta accedere alla sezione Account nelle Impostazioni e cliccare su "Annulla abbonamento". Dopo la cancellazione, l'abbonamento rimarrà attivo per il periodo rimanente già pagato. Per maggiori informazioni, clicca qui
È possibile scaricare libri? Se sì, come?
Al momento è possibile scaricare tramite l'app tutti i nostri libri ePub mobile-friendly. Anche la maggior parte dei nostri PDF è scaricabile e stiamo lavorando per rendere disponibile quanto prima il download di tutti gli altri file. Per maggiori informazioni, clicca qui
Che differenza c'è tra i piani?
Entrambi i piani ti danno accesso illimitato alla libreria e a tutte le funzionalità di Perlego. Le uniche differenze sono il prezzo e il periodo di abbonamento: con il piano annuale risparmierai circa il 30% rispetto a 12 rate con quello mensile.
Cos'è Perlego?
Perlego è un servizio di abbonamento a testi accademici, che ti permette di accedere a un'intera libreria online a un prezzo inferiore rispetto a quello che pagheresti per acquistare un singolo libro al mese. Con oltre 1 milione di testi suddivisi in più di 1.000 categorie, troverai sicuramente ciò che fa per te! Per maggiori informazioni, clicca qui.
Perlego supporta la sintesi vocale?
Cerca l'icona Sintesi vocale nel prossimo libro che leggerai per verificare se è possibile riprodurre l'audio. Questo strumento permette di leggere il testo a voce alta, evidenziandolo man mano che la lettura procede. Puoi aumentare o diminuire la velocità della sintesi vocale, oppure sospendere la riproduzione. Per maggiori informazioni, clicca qui.
Classic Computer Science Problems in Java è disponibile online in formato PDF/ePub?
Sì, puoi accedere a Classic Computer Science Problems in Java di David Kopec in formato PDF e/o ePub, così come ad altri libri molto apprezzati nelle sezioni relative a Computer Science e Computer Science General. Scopri oltre 1 milione di libri disponibili nel nostro catalogo.

Informazioni

Editore
Manning
Anno
2020
ISBN
9781638356547

1 Small problems

To get started, we will explore some simple problems that can be solved with no more than a few relatively short functions. Although these problems are small, they will still allow us to explore some interesting problem-solving techniques. Think of them as a good warm-up.

1.1 The Fibonacci sequence

The Fibonacci sequence is a sequence of numbers such that any number, except for the first and second, is the sum of the previous two:
0, 1, 1, 2, 3, 5, 8, 13, 21...
The value of the first Fibonacci number in the sequence is 0. The value of the fourth Fibonacci number is 2. It follows that to get the value of any Fibonacci number, n, in the sequence, one can use the formula
fib(n) = fib(n - 1) + fib(n - 2)

1.1.1 A first recursive attempt

The preceding formula for computing a number in the Fibonacci sequence (illustrated in figure 1.1) is a form of pseudocode that can be trivially translated into a recursive Java method. (A recursive method is a method that calls itself.) This mechanical translation will serve as our first attempt at writing a method to return a given value of the Fibonacci sequence.
1-1

Figure 1.1 The height of each stickman is the previous two stickmen’s heights added together.
Listing 1.1 Fib1.java
package chapter1; public class Fib1 {  // This method will cause a java.lang.StackOverflowError private static int fib1(int n) { return fib1(n - 1) + fib1(n - 2); }
Let’s try to run this method by calling it with a value.
Listing 1.2 Fib1.java continued
 public static void main(String[] args) {  // Don't run this! System.out.println(fib1(5)); } }
Uh-oh! If we try to run Fib1.java, we generate an exception:
Exception in thread "main" java.lang.StackOverflowError
The issue is that fib1() will run forever without returning a final result. Every call to fib1() results in another two calls of fib1() with no end in sight. We call such a circumstance infinite recursion (see figure 1.2), and it is analogous to an infinite loop.
1-2

Figure 1.2 The recursive function fib(n) calls itself with the arguments n-1 and n-2.

1.1.2 Utilizing base cases

Notice that until you run fib1(), there is no indication from your Java environment that there is anything wrong with it. It is the duty of the programmer to avoid infinite recursion, not the compiler. The reason for the infinite recursion is that we never specified a base case. In a recursive function, a base case serves as a stopping point.
In the case of the Fibonacci sequence, we have natural base cases in the form of the special first two sequence values, 0 and 1. Neither 0 nor 1 is the sum of the previous two numbers in the sequence. Instead, they are the special first two values. Let’s try specifying them as base cases.
Listing 1.3 Fib2.java
package chapter1; public class Fib2 { private static int fib2(int n) { if (n < 2) { return n; } return fib2(n - 1) + fib2(n - 2); }
Note The fib2() version of the Fibonacci method returns 0 as the zeroth number (fib2(0)), rather than the first number, as in our original proposition. In a programming context, this kind of makes sense because we are used to sequences starting with a zeroth element.
fib2() can be called successfully and will return correct results. Try calling it with some small values.
Listing 1.4 Fib2.java continued
 public static void main(String[] args) { System.out.println(fib2(5)); System.out.println(fib2(10)); } }
Do not try calling fib2(40). It may take a very long time to finish executing! Why? Every call to fib2() results in two more calls to fib2() by way of the recursive calls fib2(n - 1) and fib2(n - 2) (see figure 1.3). In other words, the call tree grows exponentially. For example, a call of fib2(4) results in this entire set of calls:
fib2(4) -> fib2(3), fib2(2) fib2(3) -> fib2(2), fib2(1) fib2(2) -> fib2(1), fib2(0) fib2(2) -> fib2(1), fib2(0) fib2(1) -> 1 fib2(1) -> 1 fib2(1) -> 1 fib2(0) -> 0 fib2(0) -> 0
1-3

Figure 1.3 Every non-base-case call of fib2() results in two more calls of fib2().
If you count them (and as you will see if you add some print calls), there are 9 calls to fib2() just to compute the 4th element! It gets worse. There are 15 calls required to compute element 5, 177 calls to compute element 10, and 21,891 calls to compute element 20. We can do better.

1.1.3 Memoization to the rescue

Memoization is a technique in which you store the results of computational tasks when they are completed so that when you need them again, you can look them up instead of needing to compute them a second (or millionth) time (see figure 1.4).1
1-4

Figure 1.4 The human memoization machine
Let’s create a new version of the Fibonacci method that utilizes a Java map for memoization purposes.
Listing 1.5 Fib3.java
package chapter1; import java.util.HashMap; import java.util.Map; public class Fib3 {  // Map.of() was introduced in Java 9 but returns  // an immutable Map  // This creates a map with 0->0 and 1->1  // which represent our base cases static Map<Integer, Integer> memo = new HashMap<>...

Indice dei contenuti