Recent Developments in Forward Osmosis Processes
eBook - ePub

Recent Developments in Forward Osmosis Processes

Rodrigo Valladares Linares, Zhenyu Li, Menachem Elimelech, Gary Amy, Hans Vrouwenvelder, Rodrigo Valladares Linares, Zhenyu Li, Menachem Elimelech, Gary Amy, Hans Vrouwenvelder

Condividi libro
  1. English
  2. ePUB (disponibile sull'app)
  3. Disponibile su iOS e Android
eBook - ePub

Recent Developments in Forward Osmosis Processes

Rodrigo Valladares Linares, Zhenyu Li, Menachem Elimelech, Gary Amy, Hans Vrouwenvelder, Rodrigo Valladares Linares, Zhenyu Li, Menachem Elimelech, Gary Amy, Hans Vrouwenvelder

Dettagli del libro
Anteprima del libro
Indice dei contenuti
Citazioni

Informazioni sul libro

Forward osmosis (FO) is an emerging membrane technology with a range of possible water treatment applications (desalination and wastewater treatment and recovery). Recent Developments in Forward Osmosis Processes provides an overview of applications, advantages, challenges, costs and current knowledge gaps. Commercial technology, hybrid FO systems for both desalination and water recovery applications have shown to have higher capital cost compared to conventional technologies. Nevertheless, due to the demonstrated lower operational costs of hybrid FO systems, the unit cost for each m3 of fresh water produced with the FO system are lower than conventional desalination/water recovery technologies (i.e. ultrafiltration/RO systems).There are key benefits of using FO hybrid systems compared to RO: •chemical storage and feed systems may be reduced for capital, operational and maintenance cost savings, •reduced process piping costs, •more flexible treatment units, •higher overall sustainability of the desalination process, while producing high quality water.

Domande frequenti

Come faccio ad annullare l'abbonamento?
È semplicissimo: basta accedere alla sezione Account nelle Impostazioni e cliccare su "Annulla abbonamento". Dopo la cancellazione, l'abbonamento rimarrà attivo per il periodo rimanente già pagato. Per maggiori informazioni, clicca qui
È possibile scaricare libri? Se sì, come?
Al momento è possibile scaricare tramite l'app tutti i nostri libri ePub mobile-friendly. Anche la maggior parte dei nostri PDF è scaricabile e stiamo lavorando per rendere disponibile quanto prima il download di tutti gli altri file. Per maggiori informazioni, clicca qui
Che differenza c'è tra i piani?
Entrambi i piani ti danno accesso illimitato alla libreria e a tutte le funzionalità di Perlego. Le uniche differenze sono il prezzo e il periodo di abbonamento: con il piano annuale risparmierai circa il 30% rispetto a 12 rate con quello mensile.
Cos'è Perlego?
Perlego è un servizio di abbonamento a testi accademici, che ti permette di accedere a un'intera libreria online a un prezzo inferiore rispetto a quello che pagheresti per acquistare un singolo libro al mese. Con oltre 1 milione di testi suddivisi in più di 1.000 categorie, troverai sicuramente ciò che fa per te! Per maggiori informazioni, clicca qui.
Perlego supporta la sintesi vocale?
Cerca l'icona Sintesi vocale nel prossimo libro che leggerai per verificare se è possibile riprodurre l'audio. Questo strumento permette di leggere il testo a voce alta, evidenziandolo man mano che la lettura procede. Puoi aumentare o diminuire la velocità della sintesi vocale, oppure sospendere la riproduzione. Per maggiori informazioni, clicca qui.
Recent Developments in Forward Osmosis Processes è disponibile online in formato PDF/ePub?
Sì, puoi accedere a Recent Developments in Forward Osmosis Processes di Rodrigo Valladares Linares, Zhenyu Li, Menachem Elimelech, Gary Amy, Hans Vrouwenvelder, Rodrigo Valladares Linares, Zhenyu Li, Menachem Elimelech, Gary Amy, Hans Vrouwenvelder in formato PDF e/o ePub, così come ad altri libri molto apprezzati nelle sezioni relative a Biowissenschaften e Umweltwissenschaft. Scopri oltre 1 milione di libri disponibili nel nostro catalogo.

Informazioni

Anno
2017
ISBN
9781780408811
© IWA Publishing 2017. Rodrigo Valladares Linares, Zhenyu Li, Menachem Elimelech, Gary Amy and Hans Vrouwenvelder. Recent Developments in Forward Osmosis Processes. DOI: 10.2166/9781780408125_001
Part 1
Introduction
3553ch01f00_fmt.webp
Chapter 1.1
Population distribution and water scarcity
Globally, the level of urbanization has significantly increased during the last six decades. In 2010, urban areas comprised 3.5 billion people, or 50.5 per cent of the world’s population (United Nations, 2011). Due to the development of coastal regions in many countries, two-fifths of cities with populations of 1 million to 10 million people are located near coastlines (Tibbetts, 2002). Moreover, 14 of the largest 17 cities in the world are situated along coasts (Figure 1.1.1) (Creel, 2003b).
3553ch01f01_fmt.webp
Figure 1.1.1 Fourteen of the world’s largest cities are located along the coast (indicated in orange), which translates into an opportunity to integrate drinking water and wastewater management, especially in water-stressed areas (Creel, 2003) (image adapted from: NASA (2000)).
With increasing population growth, the demand for clean water is also increasing. Under an average economic growth scenario and when no efficiency gains are assumed, global fresh water demand will increase 53% from 2009 to 2030, from 4.5 trillion m3 to 6.9 trillion m3 (The Barila Group et al. 2009), with a proportionally greater deficit in many developing countries. This situation will leave between 2.4 billion and 3.2 billion people under water-scarce or water-stressed conditions by year 2025, four-folding the number of people that lived in areas with limited fresh water availability at the beginning of the 20th century. Water shortage is likely to grow especially acute in the Middle East and much of Africa (Engelman et al. 2000), as well as vast areas in Australia, China, India and Mexico (Figure 1.1.2), directly associated with the physical absence of additional fresh water resources to cover their demand. Besides the amount of water itself, the quality must comply with the minimum standards set by each country’s regulations to be considered as potable; diarrheal disease alone is responsible for the death of 1.8 million people every year, and it was estimated that 88% of these cases are attributable to unsafe water supply, sanitation and hygiene (Prüss-Üstün & Corvalá, 2004).
3553ch01f02_fmt.webp
Figure 1.1.2 Projected global water scarcity by 2025 (international water management institute).
Human population distribution along the coasts represents a great challenge in terms of water management, due to the contamination of surface and ground water (basins, aquifers, rivers, etc.), limited fresh water sources in some areas, and more stringent environmental regulations that restrict the use of certain water resources. Therefore, a comprehensive strategy for the management of water resources is crucial for the sustainable development of these areas (Li et al. 2014).
Since more than 97% of the water in the world is seawater (Figure 1.1.3), desalination technologies have the potential to solve the fresh water crisis, particularly in coastal areas. The most used desalination technique nowadays is reverse osmosis, where a membrane is used as a physical barrier to separate the salts from the water, using high hydraulic pressure (Amjad, 1993). Nevertheless, the use of pressure imposes a high cost on operation of these systems, besides the known persistent fouling problems associated with membrane filtration systems (Ridgway & Flemming, 1996; Shannon et al. 2008; Vrouwenvelder et al. 2008).
3553ch01f03_fmt.webp
Figure 1.1.3 Total water distribution in the world (UNESCO, 1999).
Research has identified the potential for hybrid forward osmosis/reverse osmosis (FO/RO) systems for several applications, including sweater desalination (Choi et al. 2009), to reduce the cost and fouling propensity of producing fresh water from impaired-quality water sources (Chang et al. 2002; Achilli et al. 2009; Boo et al. 2013). Recently, studies have shown the potential of these systems to produce low cost high quality fresh water using low pressure desalination, while simultaneously recovering impaired water from a recycled feed water (Cath et al. 2009; Yangali-Quintanilla et al. 2011). Nevertheless, there are concerns about the use of FO membranes as a barrier for rejecting micropollutants and nutrients from the wastewater, besides the inevitable fouling problems that can occur during the filtration process, when the membrane is submerged in the recycled feed water, resulting in a poor water flux and an increase in the operational cost due to membrane cleaning.
1.1.1 OSMOTIC MEMBRANE PROCESSES
Osmosis is defined as the transport of water through a semipermeable membrane caused by a difference in osmotic pressure for the solutions on both sides of the membrane. The osmotic pressure is related to the concentration of dissolved ions in solution and the temperature (Cath et al. 2009).
Osmotic pressure (π) can be calculated using the van’t Hoff equation (van’t Hoff, 1887):
49661.webp
(1.1.1)
where i is the dimensionless van’t Hoff factor for the specific ion, M is the molarity of the specific ion, R is the gas constant (0.08206 L atm mol1 K1), and T is the temperature in Kelvin.
The most common applied membrane filtration processes are reverse osmosis (RO), pressure retarded osmosis (PRO) and forward osmosis (FO), also known as osmosis or direct osmosis, are shown in Figure 1.1.4.
3553ch01f04_fmt.webp
Figure 1.1.4 Osmotic processes in membrane filtration. ΔP – applied hydraulic pressure; Δπ – osmotic pressure difference between the two solutions; Jw – water flux.
RO occurs when the osmotic pres...

Indice dei contenuti