Complexity Science
eBook - ePub

Complexity Science

An Introduction

Mark A Peletier, Rutger A van Santen;Erik Steur

Condividi libro
  1. 428 pagine
  2. English
  3. ePUB (disponibile sull'app)
  4. Disponibile su iOS e Android
eBook - ePub

Complexity Science

An Introduction

Mark A Peletier, Rutger A van Santen;Erik Steur

Dettagli del libro
Anteprima del libro
Indice dei contenuti
Citazioni

Informazioni sul libro

This book on complexity science comprises a collection of chapters on methods and principles from a wide variety of disciplinary fields — from physics and chemistry to biology and the social sciences.

In this two-part volume, the first part is a collection of chapters introducing different aspects in a coherent fashion, and providing a common basis and the founding principles of the different complexity science approaches; the next provides deeper discussions of the different methods of use in complexity science, with interesting illustrative applications.

The fundamental topics deal with self-organization, pattern formation, forecasting uncertainties, synchronization and revolutionary change, self-adapting and self-correcting systems, and complex networks. Examples are taken from biology, chemistry, engineering, epidemiology, robotics, economics, sociology, and neurology.

Contents:

  • Basic Concepts:
    • The Many Facets of Complexity
    • Disguises of Complexity
  • Tools:
    • Complex Dynamics of Deterministic Nonlinear Systems (Erik Steur and Henk Nijmeijer)
    • Pattern Formation in Reaction-Diffusion Systems — An Explicit Approach (Arjen Doelman)
    • A Primer on Stochastic Processes (Mark A Peletier)
    • Random Graphs Models for Complex Networks, and the Brain (Remco van der Hofstad)
    • Mesoscale Simulations of Complex Fluids (Johan T Padding)
  • Applications:
    • Biorhythms and the Brain (Jos H T Rohling and Johanna H Meijer)
    • Modelling of Collective Motion (Barry W Fitzgerald, Rutger A van Santen and Johan T Padding)
    • Path-Integral Representation of Diluted Pedestrian Dynamics (Alessandro Corbetta and Federico Toschi)
    • Chemical Reaction Kinetic Perspective with Mesoscopic Nonequilibrium Thermodynamics (Hong Qian)
    • Metabolic Pathways and Optimisation (Robert Planqué and Josephus Hulshof)
    • Particle-Based Modelling of Flows Through Obstacles (Emilio N M Cirillo, Adrian Muntean and Rutger A van Santen)


Readership: A wide spectrum of graduate students and researchers interested in complexity ranging from mathematical and chemical to biology and social sciences.Complexity;Self-Organization;Pattern Formation;Synchronization;Networks0 Key Features:

  • Provides tutorial introductory chapters; highlighting theories, concepts and methods at bachelor/master level from a unifying perspective
  • Includes more advanced chapters that provide deep background on the different matters
  • Explains and illustrates application areas

Domande frequenti

Come faccio ad annullare l'abbonamento?
È semplicissimo: basta accedere alla sezione Account nelle Impostazioni e cliccare su "Annulla abbonamento". Dopo la cancellazione, l'abbonamento rimarrà attivo per il periodo rimanente già pagato. Per maggiori informazioni, clicca qui
È possibile scaricare libri? Se sì, come?
Al momento è possibile scaricare tramite l'app tutti i nostri libri ePub mobile-friendly. Anche la maggior parte dei nostri PDF è scaricabile e stiamo lavorando per rendere disponibile quanto prima il download di tutti gli altri file. Per maggiori informazioni, clicca qui
Che differenza c'è tra i piani?
Entrambi i piani ti danno accesso illimitato alla libreria e a tutte le funzionalità di Perlego. Le uniche differenze sono il prezzo e il periodo di abbonamento: con il piano annuale risparmierai circa il 30% rispetto a 12 rate con quello mensile.
Cos'è Perlego?
Perlego è un servizio di abbonamento a testi accademici, che ti permette di accedere a un'intera libreria online a un prezzo inferiore rispetto a quello che pagheresti per acquistare un singolo libro al mese. Con oltre 1 milione di testi suddivisi in più di 1.000 categorie, troverai sicuramente ciò che fa per te! Per maggiori informazioni, clicca qui.
Perlego supporta la sintesi vocale?
Cerca l'icona Sintesi vocale nel prossimo libro che leggerai per verificare se è possibile riprodurre l'audio. Questo strumento permette di leggere il testo a voce alta, evidenziandolo man mano che la lettura procede. Puoi aumentare o diminuire la velocità della sintesi vocale, oppure sospendere la riproduzione. Per maggiori informazioni, clicca qui.
Complexity Science è disponibile online in formato PDF/ePub?
Sì, puoi accedere a Complexity Science di Mark A Peletier, Rutger A van Santen;Erik Steur in formato PDF e/o ePub, così come ad altri libri molto apprezzati nelle sezioni relative a Physical Sciences e Chaotic Behavior in Systems. Scopri oltre 1 milione di libri disponibili nel nostro catalogo.

Informazioni

Editore
WSPC
Anno
2019
ISBN
9789813239616

Part B

Tools

Chapter 3

Complex dynamics of deterministic nonlinear systems

Erik Steur and Henk Nijmeijer
We give an introduction to the analysis of the dynamics of deterministic nonlinear systems from a systems and control point of view. In particular, we discuss the stabilizing or destabilizing effect of feedback interconnections in nonlinear dynamical systems. With the help of this machinery we explain two types of complex collective dynamics in networks of nonlinear systems.

1. Introduction

A central topic in complexity science is the study of asymptotic behavior of deterministic nonlinear dynamical systems. In this chapter we consider those nonlinear systems whose dynamics are described by ordinary differential equations (ODEs). As mentioned in Chapter 1, Sec. 3.1, such systems arise from fundamental laws of physics, mean-field approximations, or they can be the result of empirical modeling. However, we do not focus on modeling; we consider the models (in the form of ODEs) to be given. Our contribution lies in the introduction of a number of tools for the analysis of their asymptotic dynamics, i.e. the dynamical behavior of the system as time grows large.
We start with a discussion of a geometric approach to the analysis of the dynamics of deterministic nonlinear systems. Then we present some results from stability theory and we discuss when a loss of stability results in a bifurcation that gives rise to “new” dynamics. Bifurcations are related to tipping points [46], emergent oscillations and pattern formation (this chapter and Chapter 4) and chaos [55]. Subsequently we introduce dynamical systems with inputs and outputs, which allow the systems to interact with their environment or other systems. We discuss the stability of such input-output systems in a feedback configuration. In particular, we highlight the role of the internal dynamics of an input-output system, which are the dynamics that are not directly observed via the output. We show that stability properties of these internal dynamics determine whether of not the whole system is (de)stabilized via the feedback.
Next we introduce a class of nonlinear dynamical systems that interconnect over a network. Such systems, which we call network dynamical systems (NDSs) are omnipresent in society, science and nature. Examples include power networks, biochemical circuits and metabolic networks (see Chapter 12) and the human brain (see Chapters 6 and 8), just to name a few. NDSs may have complex collective dynamics, like the emergence of spontaneous order (i.e. synchronization) or other types of patterned activity, which result from nonlinearities in the systems’ dynamics, the interactions, or both. We present two numerical studies of collective dynamics of NDSs, namely i. synchronization in an NDS with model neurons, and ii. emergent oscillations in an NDS with electrically coupled cells, which are silent in absence of interaction. We analyze these collective dynamics from a systems and control point of view. We consider an NDS as a dynamical feedback system and we apply our previously introduced analysis tools to explain to synchronization and emergent oscillations. In particular, we show that the internal dynamics of the subsystems of the NDS play an important role in the emergence of these collective dynamics.

Notation

We adapt the following (standard) notation. We denote by
image
the real numbers,
image
+ the positive real numbers, and
image
+ the non-negative real numbers (i.e.
image
+ =
image
+ ∪ {0}). For a natural number n (i.e. n ∈ {1, 2, . . .})
image
n is the n-dimensional real space, i.e. the space of n-tuples of real numbers. We represent an element x of
image
n as a column vector
image
where x1, x2, . . . , xn
image
. Transposition of a matrix (or vector) is denoted by superscript T. The n × n-dimensional identity matrix is denoted by In. The Euclidean norm of a vector is denoted by || · ||, i.e. ||x|| =
image
for any ...

Indice dei contenuti