Complexity Science
eBook - ePub

Complexity Science

An Introduction

Mark A Peletier, Rutger A van Santen;Erik Steur

Partager le livre
  1. 428 pages
  2. English
  3. ePUB (adapté aux mobiles)
  4. Disponible sur iOS et Android
eBook - ePub

Complexity Science

An Introduction

Mark A Peletier, Rutger A van Santen;Erik Steur

DĂ©tails du livre
Aperçu du livre
Table des matiĂšres
Citations

À propos de ce livre

This book on complexity science comprises a collection of chapters on methods and principles from a wide variety of disciplinary fields — from physics and chemistry to biology and the social sciences.

In this two-part volume, the first part is a collection of chapters introducing different aspects in a coherent fashion, and providing a common basis and the founding principles of the different complexity science approaches; the next provides deeper discussions of the different methods of use in complexity science, with interesting illustrative applications.

The fundamental topics deal with self-organization, pattern formation, forecasting uncertainties, synchronization and revolutionary change, self-adapting and self-correcting systems, and complex networks. Examples are taken from biology, chemistry, engineering, epidemiology, robotics, economics, sociology, and neurology.

Contents:

  • Basic Concepts:
    • The Many Facets of Complexity
    • Disguises of Complexity
  • Tools:
    • Complex Dynamics of Deterministic Nonlinear Systems (Erik Steur and Henk Nijmeijer)
    • Pattern Formation in Reaction-Diffusion Systems — An Explicit Approach (Arjen Doelman)
    • A Primer on Stochastic Processes (Mark A Peletier)
    • Random Graphs Models for Complex Networks, and the Brain (Remco van der Hofstad)
    • Mesoscale Simulations of Complex Fluids (Johan T Padding)
  • Applications:
    • Biorhythms and the Brain (Jos H T Rohling and Johanna H Meijer)
    • Modelling of Collective Motion (Barry W Fitzgerald, Rutger A van Santen and Johan T Padding)
    • Path-Integral Representation of Diluted Pedestrian Dynamics (Alessandro Corbetta and Federico Toschi)
    • Chemical Reaction Kinetic Perspective with Mesoscopic Nonequilibrium Thermodynamics (Hong Qian)
    • Metabolic Pathways and Optimisation (Robert Planqué and Josephus Hulshof)
    • Particle-Based Modelling of Flows Through Obstacles (Emilio N M Cirillo, Adrian Muntean and Rutger A van Santen)


Readership: A wide spectrum of graduate students and researchers interested in complexity ranging from mathematical and chemical to biology and social sciences.Complexity;Self-Organization;Pattern Formation;Synchronization;Networks0 Key Features:

  • Provides tutorial introductory chapters; highlighting theories, concepts and methods at bachelor/master level from a unifying perspective
  • Includes more advanced chapters that provide deep background on the different matters
  • Explains and illustrates application areas

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans paramĂštres et de cliquer sur « RĂ©silier l’abonnement ». C’est aussi simple que cela ! Une fois que vous aurez rĂ©siliĂ© votre abonnement, il restera actif pour le reste de la pĂ©riode pour laquelle vous avez payĂ©. DĂ©couvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptĂ©s aux mobiles peuvent ĂȘtre tĂ©lĂ©chargĂ©s via l’application. La plupart de nos PDF sont Ă©galement disponibles en tĂ©lĂ©chargement et les autres seront tĂ©lĂ©chargeables trĂšs prochainement. DĂ©couvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accĂšs complet Ă  la bibliothĂšque et Ă  toutes les fonctionnalitĂ©s de Perlego. Les seules diffĂ©rences sont les tarifs ainsi que la pĂ©riode d’abonnement : avec l’abonnement annuel, vous Ă©conomiserez environ 30 % par rapport Ă  12 mois d’abonnement mensuel.
Qu’est-ce que Perlego ?
Nous sommes un service d’abonnement Ă  des ouvrages universitaires en ligne, oĂč vous pouvez accĂ©der Ă  toute une bibliothĂšque pour un prix infĂ©rieur Ă  celui d’un seul livre par mois. Avec plus d’un million de livres sur plus de 1 000 sujets, nous avons ce qu’il vous faut ! DĂ©couvrez-en plus ici.
Prenez-vous en charge la synthÚse vocale ?
Recherchez le symbole Écouter sur votre prochain livre pour voir si vous pouvez l’écouter. L’outil Écouter lit le texte Ă  haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l’accĂ©lĂ©rer ou le ralentir. DĂ©couvrez-en plus ici.
Est-ce que Complexity Science est un PDF/ePUB en ligne ?
Oui, vous pouvez accĂ©der Ă  Complexity Science par Mark A Peletier, Rutger A van Santen;Erik Steur en format PDF et/ou ePUB ainsi qu’à d’autres livres populaires dans Sciences physiques et Comportement chaotique dans les systĂšmes. Nous disposons de plus d’un million d’ouvrages Ă  dĂ©couvrir dans notre catalogue.

Informations

Éditeur
WSPC
Année
2019
ISBN
9789813239616

Part B

Tools

Chapter 3

Complex dynamics of deterministic nonlinear systems

Erik Steur and Henk Nijmeijer
We give an introduction to the analysis of the dynamics of deterministic nonlinear systems from a systems and control point of view. In particular, we discuss the stabilizing or destabilizing effect of feedback interconnections in nonlinear dynamical systems. With the help of this machinery we explain two types of complex collective dynamics in networks of nonlinear systems.

1. Introduction

A central topic in complexity science is the study of asymptotic behavior of deterministic nonlinear dynamical systems. In this chapter we consider those nonlinear systems whose dynamics are described by ordinary differential equations (ODEs). As mentioned in Chapter 1, Sec. 3.1, such systems arise from fundamental laws of physics, mean-field approximations, or they can be the result of empirical modeling. However, we do not focus on modeling; we consider the models (in the form of ODEs) to be given. Our contribution lies in the introduction of a number of tools for the analysis of their asymptotic dynamics, i.e. the dynamical behavior of the system as time grows large.
We start with a discussion of a geometric approach to the analysis of the dynamics of deterministic nonlinear systems. Then we present some results from stability theory and we discuss when a loss of stability results in a bifurcation that gives rise to “new” dynamics. Bifurcations are related to tipping points [46], emergent oscillations and pattern formation (this chapter and Chapter 4) and chaos [55]. Subsequently we introduce dynamical systems with inputs and outputs, which allow the systems to interact with their environment or other systems. We discuss the stability of such input-output systems in a feedback configuration. In particular, we highlight the role of the internal dynamics of an input-output system, which are the dynamics that are not directly observed via the output. We show that stability properties of these internal dynamics determine whether of not the whole system is (de)stabilized via the feedback.
Next we introduce a class of nonlinear dynamical systems that interconnect over a network. Such systems, which we call network dynamical systems (NDSs) are omnipresent in society, science and nature. Examples include power networks, biochemical circuits and metabolic networks (see Chapter 12) and the human brain (see Chapters 6 and 8), just to name a few. NDSs may have complex collective dynamics, like the emergence of spontaneous order (i.e. synchronization) or other types of patterned activity, which result from nonlinearities in the systems’ dynamics, the interactions, or both. We present two numerical studies of collective dynamics of NDSs, namely i. synchronization in an NDS with model neurons, and ii. emergent oscillations in an NDS with electrically coupled cells, which are silent in absence of interaction. We analyze these collective dynamics from a systems and control point of view. We consider an NDS as a dynamical feedback system and we apply our previously introduced analysis tools to explain to synchronization and emergent oscillations. In particular, we show that the internal dynamics of the subsystems of the NDS play an important role in the emergence of these collective dynamics.

Notation

We adapt the following (standard) notation. We denote by
image
the real numbers,
image
+ the positive real numbers, and
image
+ the non-negative real numbers (i.e.
image
+ =
image
+ âˆȘ {0}). For a natural number n (i.e. n ∈ {1, 2, . . .})
image
n is the n-dimensional real space, i.e. the space of n-tuples of real numbers. We represent an element x of
image
n as a column vector
image
where x1, x2, . . . , xn ∈
image
. Transposition of a matrix (or vector) is denoted by superscript T. The n × n-dimensional identity matrix is denoted by In. The Euclidean norm of a vector is denoted by || · ||, i.e. ||x|| =
image
for any ...

Table des matiĂšres