Data Mining for Business Analytics
eBook - ePub

Data Mining for Business Analytics

Concepts, Techniques, and Applications with JMP Pro

Galit Shmueli, Peter C. Bruce, Mia L. Stephens, Nitin R. Patel

Condividi libro
  1. English
  2. ePUB (disponibile sull'app)
  3. Disponibile su iOS e Android
eBook - ePub

Data Mining for Business Analytics

Concepts, Techniques, and Applications with JMP Pro

Galit Shmueli, Peter C. Bruce, Mia L. Stephens, Nitin R. Patel

Dettagli del libro
Anteprima del libro
Indice dei contenuti
Citazioni

Informazioni sul libro

Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro® presents an applied and interactive approach to data mining.

Featuring hands-on applications with JMP Pro®, a statistical package from the SAS Institute, the book
uses engaging, real-world examples to build a theoretical and practical understanding of key data mining methods, especially predictive models for classification and prediction. Topics include data visualization, dimension reduction techniques, clustering, linear and logistic regression, classification and regression trees, discriminant analysis, naive Bayes, neural networks, uplift modeling, ensemble models, and time series forecasting.

Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro® also includes:

  • Detailed summaries that supply an outline of key topics at the beginning of each chapter
  • End-of-chapter examples and exercises that allow readers to expand their comprehension of the presented material
  • Data-rich case studies to illustrate various applications of data mining techniques
  • A companion website with over two dozen data sets, exercises and case study solutions, and slides for instructors www.dataminingbook.com

Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro® is an excellent textbook for advanced undergraduate and graduate-level courses on data mining, predictive analytics, and business analytics. The book is also a one-of-a-kind resource for data scientists, analysts, researchers, and practitioners working with analytics in the fields of management, finance, marketing, information technology, healthcare, education, and any other data-rich field.

Domande frequenti

Come faccio ad annullare l'abbonamento?
È semplicissimo: basta accedere alla sezione Account nelle Impostazioni e cliccare su "Annulla abbonamento". Dopo la cancellazione, l'abbonamento rimarrà attivo per il periodo rimanente già pagato. Per maggiori informazioni, clicca qui
È possibile scaricare libri? Se sì, come?
Al momento è possibile scaricare tramite l'app tutti i nostri libri ePub mobile-friendly. Anche la maggior parte dei nostri PDF è scaricabile e stiamo lavorando per rendere disponibile quanto prima il download di tutti gli altri file. Per maggiori informazioni, clicca qui
Che differenza c'è tra i piani?
Entrambi i piani ti danno accesso illimitato alla libreria e a tutte le funzionalità di Perlego. Le uniche differenze sono il prezzo e il periodo di abbonamento: con il piano annuale risparmierai circa il 30% rispetto a 12 rate con quello mensile.
Cos'è Perlego?
Perlego è un servizio di abbonamento a testi accademici, che ti permette di accedere a un'intera libreria online a un prezzo inferiore rispetto a quello che pagheresti per acquistare un singolo libro al mese. Con oltre 1 milione di testi suddivisi in più di 1.000 categorie, troverai sicuramente ciò che fa per te! Per maggiori informazioni, clicca qui.
Perlego supporta la sintesi vocale?
Cerca l'icona Sintesi vocale nel prossimo libro che leggerai per verificare se è possibile riprodurre l'audio. Questo strumento permette di leggere il testo a voce alta, evidenziandolo man mano che la lettura procede. Puoi aumentare o diminuire la velocità della sintesi vocale, oppure sospendere la riproduzione. Per maggiori informazioni, clicca qui.
Data Mining for Business Analytics è disponibile online in formato PDF/ePub?
Sì, puoi accedere a Data Mining for Business Analytics di Galit Shmueli, Peter C. Bruce, Mia L. Stephens, Nitin R. Patel in formato PDF e/o ePub, così come ad altri libri molto apprezzati nelle sezioni relative a Mathematics e Probability & Statistics. Scopri oltre 1 milione di libri disponibili nel nostro catalogo.

Informazioni

Editore
Wiley
Anno
2016
ISBN
9781118877524
Argomento
Mathematics
Edizione
1

Part I
Preliminaries

1
Introduction

1.1 What is Business Analytics

Business analytics is the practice and art of bringing quantitative data to bear on decision-making. The term means different things to different organizations. Consider the role of analytics in helping newspapers survive the transition to a digital world.
One tabloid newspaper with a working-class readership in Britain had launched a web version of the paper, and did tests on its home page to determine which images produced more hits: cats, dogs, or monkeys. This simple application, for this company, was considered analytics. By contrast, the Washington Post has a highly influential audience that is of interest to big defense contractors: it is perhaps the only newspaper where you routinely see advertisements for aircraft carriers. In the digital environment, the Post can track readers by time of day, location, and user subscription information. In this fashion the display of the aircraft carrier advertisement in the online paper may be focused on a very small group of individuals—say, the members of the House and Senate Armed Services Committees who will be voting on the Pentagon's budget.
Business analytics, or more generically, analytics, includes a range of data analysis methods. Many powerful applications involve little more than counting, rule checking, and basic arithmetic. For some organizations, this is what is meant by analytics.
The next level of business analytics, now termed business intelligence, refers to the use of data visualization and reporting for becoming aware and understanding “what happened and what is happening.” This is done by use of charts, tables, and dashboards to display, examine, and explore data. Business intelligence, which earlier consisted mainly of generating static reports, has evolved into more user-friendly and effective tools and practices, such as creating interactive dashboards that allow the user not only to access real-time data, but also to directly interact with it. Effective dashboards are those that tie directly to company data, and give managers a tool to see quickly what might not readily be apparent in a large complex database. One such tool for industrial operations managers displays customer orders in one two-dimensional display using color and bubble size as added variables. The resulting 2 by 2 matrix shows customer name, type of product, size of order, and length of time to produce.
Business analytics includes more sophisticated data analysis methods, such as statistical models and data mining algorithms used for exploring data, quantifying and explaining relationships between measurements, and predicting new records. Methods like regression models are used to describe and quantify “on average” relationships (e.g., between advertising and sales), to predict new records (e.g., whether a new patient will react positively to a medication), and to forecast future values (e.g., next week's web traffic).
The business analytics toolkit also includes statistical experiments, the most common of which is known to marketers as A-B testing. These are often used for pricing decisions:
  • Orbitz, the ...

Indice dei contenuti