Data Mining for Business Analytics
eBook - ePub

Data Mining for Business Analytics

Concepts, Techniques, and Applications with JMP Pro

Galit Shmueli, Peter C. Bruce, Mia L. Stephens, Nitin R. Patel

Partager le livre
  1. English
  2. ePUB (adapté aux mobiles)
  3. Disponible sur iOS et Android
eBook - ePub

Data Mining for Business Analytics

Concepts, Techniques, and Applications with JMP Pro

Galit Shmueli, Peter C. Bruce, Mia L. Stephens, Nitin R. Patel

Détails du livre
Aperçu du livre
Table des matières
Citations

À propos de ce livre

Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro¬ģ presents an applied and interactive approach to data mining.

Featuring hands-on applications with JMP Pro¬ģ, a statistical package from the SAS Institute, the book
uses engaging, real-world examples to build a theoretical and practical understanding of key data mining methods, especially predictive models for classification and prediction. Topics include data visualization, dimension reduction techniques, clustering, linear and logistic regression, classification and regression trees, discriminant analysis, naive Bayes, neural networks, uplift modeling, ensemble models, and time series forecasting.

Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro¬ģ also includes:

  • Detailed summaries that supply an outline of key topics at the beginning of each chapter
  • End-of-chapter examples and exercises that allow readers to expand their comprehension of the presented material
  • Data-rich case studies to illustrate various applications of data mining techniques
  • A companion website with over two dozen data sets, exercises and case study solutions, and slides for instructors www.dataminingbook.com

Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro¬ģ is an excellent textbook for advanced undergraduate and graduate-level courses on data mining, predictive analytics, and business analytics. The book is also a one-of-a-kind resource for data scientists, analysts, researchers, and practitioners working with analytics in the fields of management, finance, marketing, information technology, healthcare, education, and any other data-rich field.

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans param√®tres et de cliquer sur ¬ę¬†R√©silier l'abonnement¬†¬Ľ. C'est aussi simple que cela¬†! Une fois que vous aurez r√©sili√© votre abonnement, il restera actif pour le reste de la p√©riode pour laquelle vous avez pay√©. D√©couvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptés aux mobiles peuvent être téléchargés via l'application. La plupart de nos PDF sont également disponibles en téléchargement et les autres seront téléchargeables très prochainement. Découvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accès complet à la bibliothèque et à toutes les fonctionnalités de Perlego. Les seules différences sont les tarifs ainsi que la période d'abonnement : avec l'abonnement annuel, vous économiserez environ 30 % par rapport à 12 mois d'abonnement mensuel.
Qu'est-ce que Perlego ?
Nous sommes un service d'abonnement √† des ouvrages universitaires en ligne, o√Ļ vous pouvez acc√©der √† toute une biblioth√®que pour un prix inf√©rieur √† celui d'un seul livre par mois. Avec plus d'un million de livres sur plus de 1¬†000¬†sujets, nous avons ce qu'il vous faut¬†! D√©couvrez-en plus ici.
Prenez-vous en charge la synthèse vocale ?
Recherchez le symbole √Čcouter sur votre prochain livre pour voir si vous pouvez l'√©couter. L'outil √Čcouter lit le texte √† haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l'acc√©l√©rer ou le ralentir. D√©couvrez-en plus ici.
Est-ce que Data Mining for Business Analytics est un PDF/ePUB en ligne ?
Oui, vous pouvez accéder à Data Mining for Business Analytics par Galit Shmueli, Peter C. Bruce, Mia L. Stephens, Nitin R. Patel en format PDF et/ou ePUB ainsi qu'à d'autres livres populaires dans Mathematics et Probability & Statistics. Nous disposons de plus d’un million d’ouvrages à découvrir dans notre catalogue.

Informations

√Čditeur
Wiley
Année
2016
ISBN
9781118877524
√Čdition
1

Part I
Preliminaries

1
Introduction

1.1 What is Business Analytics

Business analytics is the practice and art of bringing quantitative data to bear on decision-making. The term means different things to different organizations. Consider the role of analytics in helping newspapers survive the transition to a digital world.
One tabloid newspaper with a working-class readership in Britain had launched a web version of the paper, and did tests on its home page to determine which images produced more hits: cats, dogs, or monkeys. This simple application, for this company, was considered analytics. By contrast, the Washington Post has a highly influential audience that is of interest to big defense contractors: it is perhaps the only newspaper where you routinely see advertisements for aircraft carriers. In the digital environment, the Post can track readers by time of day, location, and user subscription information. In this fashion the display of the aircraft carrier advertisement in the online paper may be focused on a very small group of individuals‚ÄĒsay, the members of the House and Senate Armed Services Committees who will be voting on the Pentagon's budget.
Business analytics, or more generically, analytics, includes a range of data analysis methods. Many powerful applications involve little more than counting, rule checking, and basic arithmetic. For some organizations, this is what is meant by analytics.
The next level of business analytics, now termed business intelligence, refers to the use of data visualization and reporting for becoming aware and understanding ‚Äúwhat happened and what is happening.‚ÄĚ This is done by use of charts, tables, and dashboards to display, examine, and explore data. Business intelligence, which earlier consisted mainly of generating static reports, has evolved into more user-friendly and effective tools and practices, such as creating interactive dashboards that allow the user not only to access real-time data, but also to directly interact with it. Effective dashboards are those that tie directly to company data, and give managers a tool to see quickly what might not readily be apparent in a large complex database. One such tool for industrial operations managers displays customer orders in one two-dimensional display using color and bubble size as added variables. The resulting 2 by 2 matrix shows customer name, type of product, size of order, and length of time to produce.
Business analytics includes more sophisticated data analysis methods, such as statistical models and data mining algorithms used for exploring data, quantifying and explaining relationships between measurements, and predicting new records. Methods like regression models are used to describe and quantify ‚Äúon average‚ÄĚ relationships (e.g., between advertising and sales), to predict new records (e.g., whether a new patient will react positively to a medication), and to forecast future values (e.g., next week's web traffic).
The business analytics toolkit also includes statistical experiments, the most common of which is known to marketers as A-B testing. These are often used for pricing decisions:
  • Orbitz, the ...

Table des matières