Essentials of Pharmaceutical Preformulation
eBook - ePub

Essentials of Pharmaceutical Preformulation

  1. English
  2. ePUB (mobile friendly)
  3. Available on iOS & Android
eBook - ePub

Essentials of Pharmaceutical Preformulation

About this book

Essentials of Pharmaceutical Preformulation is a study guide which describes the basic principles of pharmaceutical physicochemical characterisation. Successful preformulation requires knowledge of fundamental molecular concepts (solubility, ionisation, partitioning, hygroscopicity and stability) and macroscopic properties (physical form, such as the crystalline and amorphous states, hydrates, solvates and co-crystals and powder properties), familiarity with the techniques used to measure them and appreciation of their effect on product performance, recognising that often there is a position of compromise to be reached between product stability and bioavailability.

This text introduces the basic concepts and discusses their wider implication for pharmaceutical development, with reference to many case examples of current drugs and drug products. Special attention is given to the principles and best-practice of the analytical techniques that underpin preformulation (UV spectrophotometry, TLC, DSC, XRPD and HPLC). The material is presented in the typical order that would be followed when developing a medicine and maps onto the indicative pharmacy syllabus of the Royal Pharmaceutical Society of Great Britain

Undergraduate-level pharmacy students and R&D / analytical scientists working in the pharmaceutical sector (with or without a pharmaceutical background) will find this text easy to follow with relevant pharmaceutical examples.

  • Essential study guide for pharmacy and pharmaceutical science students
  • Covers the pharmaceutical preformulation components of the Royal Pharmaceutical Society of Great Britain's indicative syllabus
  • Easy to follow text highlighted with relevant pharmaceutical examples
  • Self-assessment assignments in a variety of formats
  • Written by authors with both academic and industrial experience
  • Companion website with further information to maximise learning

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, weโ€™ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere โ€” even offline. Perfect for commutes or when youโ€™re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Essentials of Pharmaceutical Preformulation by Simon Gaisford,Mark Saunders in PDF and/or ePUB format, as well as other popular books in Biological Sciences & Biotechnology. We have over one million books available in our catalogue for you to explore.
1
Basic Principles of Preformulation Studies
1.1 Introduction
The worldwide market for pharmaceutical sales is large and has grown consistently year-on-year for much of the past decade (Table 1.1). The advent of computer-based drug design programmes, combinatorial chemistry techniques and compound libraries populated with molecules synthesised over many decades of research and development means there is a vast array of compounds with the potential to become drug substances. However, drug substances are not administered to patients as pure compounds; they are formulated into drug products. The selection of a compound, its development into a drug substance and, ultimately, drug product is a hugely time-consuming and expensive process, which is ultimately destined for failure in the majority of cases. As a rough guide, only 1 out of every 5โ€“10 000 promising compounds will be successfully developed into a marketed drug product and the costs involved have been estimated at ca. $1.8 billion (Paul et al., 2010).
Table 1.1 Total market sales in the pharmaceutical sector from 2003 to 2010 (data from IMS Health).
Table01-1
While it is tempting to assume that all drug products are financial blockbusters, approximately 70% never generate sufficient sales to recoup their development costs. Table 1.2 shows the top 20 medicines by sales worldwide (and the percentage of revenue they generate for their respective companies). It is apparent that a significant percentage of income is generated from these blockbuster products, and the financial health and prospects of the originator company are largely dependent upon the extent of patent protection (allowing market exclusivity) and new drug products in the development pipeline.
Table 1.2 Top ten drugs by sales worldwide in 2010 (data from IMS Health).
Table01-1
These numbers imply that development of a drug product in the right therapeutic area can result in significant income, but the costs involved in reaching market are such that only a few potential drug substances can be considered for development. How best to select a compound for development from the myriad of chemical structures that may be available? It is tempting to think that the decision reduces to efficacy against a biological target alone, but in practice physicochemical properties affect how a substance will process, its stability and interaction with excipients, how it will transfer to solution and, ultimately, define its bioavailability. The compound showing greatest efficacy may not ultimately be selected if another compound has a better set of physicochemical properties that make it easier to formulate and/or manufacture. It follows that characterising the physicochemical properties of drug substances early in the development process will provide the fundamental knowledge base upon which candidate selection, and in the limit dosage form design, can be made, reducing development time and cost. This is the concept of preformulation.
1.2 Assay design
In the early stages of preformulation the need rapidly to determine bioavailability, dose and toxicity data predominate and hence the first formulations of a drug substance are usually for intravenous injection. The first task facing any formulator is thus to prepare a suitable formulation for injection โ€“ most often this requires only knowledge of solubility and the development of a suitable assay. It is extremely important to note here that no development work can proceed until there is a suitable assay in place for the drug substance. This is because experimentation requires measurement.
1.2.1 Assay development
Assays greatly assist quantitative determination of physicochemical parameters. Since each assay will in general be unique to each drug substance (or, more correctly, analyte) development of assays may be time-consuming in cases where many drug substances are being screened. The first assays developed should ideally require minimum amounts of sample, allow determination of multiple parameters and be applicable to a range of compounds. For instance, a saturated solution prepared to determine aqueous solubility may subsequently be used to determine partition coefficient, by addition of n-octanol.
Note at this stage that determination of approximate values is acceptable in order to make a go/no go decision in respect of a particular candidate and so assays do not need to be as rigorously validated as they do later in formulation development. Table 1.3 lists a range of molecular properties to be measured during preformulation, in chronological order, and the assays that may be used to quantify them. These properties are a function of molecular structure. Once known, further macroscopic (or bulk) properties of the drug candidate can be measured (Table 1.4). These properties result from intermolecular interactions. Note also that determination of chemical structure does not appear, as it is assumed that the chemists preparing the candidate molecules would provide this information. Note also that solubility will be dependent upon physical form (polymorph, pseudopolymorph or amorphous).
Table 1.3 Molecular sample properties and the assays used to determine them.
Property Assay Requirement of sample
Solubilitya
  • Aqueous
  • Nonaqueous
UV Chromophore
pKa UV or potentiometric titration Acid or basic group
Po, w/log P UV
TLC
HPLC
Chromophore
Hygroscopicity DVS
TGA
No particular requirement
Stability
  • Hydrolysis
  • Photolysis
  • Oxidation
HPL...

Table of contents

  1. Cover
  2. Companion website
  3. Title Page
  4. Copyright
  5. Dedication
  6. Preface
  7. List of Abbreviations
  8. Chapter 1: Basic Principles of Preformulation Studies
  9. Chapter 2: Ionisation Constants
  10. Chapter 3: Partition Affinity
  11. Chapter 4: Solubility
  12. Chapter 5: Dissolution
  13. Chapter 6: Salt Selection
  14. Chapter 7: Physical Form I โ€“ Crystalline Materials
  15. Chapter 8: Physical Form II โ€“ Amorphous Materials
  16. Chapter 9: Stability Assessment
  17. Chapter 10: Particle Properties
  18. Chapter 11: Powder Properties
  19. Index