The Future Is Faster Than You Think
eBook - ePub

The Future Is Faster Than You Think

How Converging Technologies Are Transforming Business, Industries, and Our Lives

Peter H. Diamandis, Steven Kotler

Share book
  1. 384 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

The Future Is Faster Than You Think

How Converging Technologies Are Transforming Business, Industries, and Our Lives

Peter H. Diamandis, Steven Kotler

Book details
Book preview
Table of contents
Citations

About This Book

From the New York Times bestselling authors of Abundance and Bold comes a practical playbook for technological convergence in our modern era. In their book Abundance, bestselling authors and futurists Peter Diamandis and Steven Kotler tackled grand global challenges, such as poverty, hunger, and energy. Then, in Bold, they chronicled the use of exponential technologies that allowed the emergence of powerful new entrepreneurs. Now the bestselling authors are back with The Future Is Faster Than You Think, a blueprint for how our world will change in response to the next ten years of rapid technological disruption.Technology is accelerating far more quickly than anyone could have imagined. During the next decade, we will experience more upheaval and create more wealth than we have in the past hundred years. In this gripping and insightful roadmap to our near future, Diamandis and Kotler investigate how wave after wave of exponentially accelerating technologies will impact both our daily lives and society as a whole. What happens as AI, robotics, virtual reality, digital biology, and sensors crash into 3D printing, blockchain, and global gigabit networks? How will these convergences transform today's legacy industries? What will happen to the way we raise our kids, govern our nations, and care for our planet?Diamandis, a space-entrepreneur-turned-innovation-pioneer, and Kotler, bestselling author and peak performance expert, probe the science of technological convergence and how it will reinvent every part of our lives—transportation, retail, advertising, education, health, entertainment, food, and finance—taking humanity into uncharted territories and reimagining the world as we know it.As indispensable as it is gripping, The Future Is Faster Than You Think provides a prescient look at our impending future.

Frequently asked questions

How do I cancel my subscription?
Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
Can/how do I download books?
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
What is the difference between the pricing plans?
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
What is Perlego?
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Do you support text-to-speech?
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Is The Future Is Faster Than You Think an online PDF/ePUB?
Yes, you can access The Future Is Faster Than You Think by Peter H. Diamandis, Steven Kotler in PDF and/or ePUB format, as well as other popular books in Business & Business Development. We have over one million books available in our catalogue for you to explore.

Information

Year
2020
ISBN
9781982109684

PART ONE THE POWER OF CONVERGENCE

CHAPTER ONE Convergence

Flying Cars

The Skirball Cultural Center sits just off the 405 Freeway, on the northern edge of Los Angeles. Built atop the thin spine of the Santa Monica Mountains, the Center offers spectacular views in nearly every direction, except for the freeway below—which is bumper-to-bumper for miles on end.
Of course it is.
In 2018, for the sixth straight year, Los Angeles earned the dubious honor of being the most gridlocked metropolis in the world, where the average driver spends two-and-a-half working weeks a year trapped in traffic. Yet help may be on its way. In May 2018, the Skirball Center was ground zero for Uber Elevate, the ridesharing company’s radical plan for solving this traffic: their second annual flying car conference.
Inside the Skirball, giant screens displayed a night sky dotted with stars that slowly faded into a blue sky dotted with clouds. Beneath the clouds, it was standing room only. The event had attracted a motley crew of the power elite: CEOs, entrepreneurs, architects, designers, technologists, venture capitalists, government officials, and real estate magnates. Nearly a thousand in total, dressed in everything from Wall Street slick to eternally casual Friday, all gathered to witness the birth of a new industry.
To kick off the conference, Jeff Holden, Uber’s (now former) chief product officer, took the stage. With curly brown hair and a gray Uber Air polo shirt, Holden had a boyish demeanor that belied his actual role in the affair. This event, in fact, the entire concept of getting Uber off the ground, was Holden’s vision.
It was quite a vision.
“We’ve come to accept extreme congestion as part of our lives,” said Holden.1 “In the U.S., we have the honor of being home to ten of the world’s twenty-five most congested cities, costing us approximately $300 billion in lost income and productivity. Uber’s mission is to solve urban mobility.
 Our goal is to introduce an entirely new form of transportation to the world, namely urban aviation, or what I prefer to call ‘aerial ridesharing.’ ”
Aerial ridesharing might sound like sci-fi clichĂ©, but Holden had a solid track record of disruptive innovation. In the late 1990s, he followed Jeff Bezos from New York to Seattle to become one of the earliest employees at Amazon. There, he was put in charge of implementing the then zany idea of free two-day shipping for a flat annual membership fee. It was an innovation that many thought would bankrupt the company. Instead, Amazon Prime was born, and today, 100 million Prime members later, that zany idea accounts for a significant portion of the company’s bottom line.
Next, Holden went to another startup, Groupon—which is hard to remember as a disruptive enterprise today, but was then part of the first wave of “power to the people” internet companies. From there, he went to Uber, where, despite the turmoil the company experienced, Holden strung together a series of unlikely wins: UberPool, Uber Eats, and, most recently, Uber’s self-driving car program. So when he proposed an even zanier product line—that Uber take to the skies—it wasn’t all that surprising that the company’s leadership took him seriously.
And for good reason. The theme of the second annual Uber Elevate wasn’t actually flying cars. The cars have already arrived. Instead, the theme of the second Uber Elevate was the path to scale. And the more critical point: That path is a lot shorter than many suspect.
By mid-2019, over $1 billion had been invested in at least twenty-five different flying car companies. A dozen vehicles are currently being test-flown, while another dozen are at stages ranging from PowerPoint to prototype. They come in all shapes and sizes, from motorcycles stacked atop oversized fans, to quadcopter drones scaled up to human size, to miniature space-pod airplanes. Larry Page, cofounder and CEO of Alphabet, Google’s parent company, was among the first to recognize their potential, personally funding three companies, Zee Aero, Opener and Kitty Hawk. Established players like Boeing, Airbus, Embraer, and Bell Helicopter (now just called Bell, a reference to the future disappearance of the helicopter itself) are also in the game. Thus, for the first time in history, we’re past the point of talking about the possibility of flying cars.
The cars are here.
“Uber’s goal,” explained Holden from the stage, “is to demonstrate flying car capability in 2020 and have aerial ridesharing fully operational in Dallas and LA by 2023.” But then Holden went even further: “Ultimately, we want to make it economically irrational to own and use a car.”
How irrational? Let’s look at the numbers.
Today, the marginal cost of car ownership—that is, not the purchase price, but everything else that goes with a car (gas, repairs, insurance, parking, etc.)—is 59 cents per passenger mile. For comparison, a helicopter, which has many more problems than just cost, covers a mile for about $8.93. For its 2020 launch, according to Holden, Uber Air wants to reduce that per mile price to $5.73, then rapidly drive it down to $1.84. But Uber’s long-term target is the game-changer—44 cents per mile—or cheaper than the cost of driving.
And you get a lot per mile. Uber’s main interest is in “electric vertical take-off and landing vehicles”—or eVTOLs for short. eVTOLs are being developed by a plethora of companies, but Uber has very particular needs. For an eVTOL to qualify for their aerial ridesharing program, it must be able to carry one pilot and four passengers at a speed of over 150 mph for three continuous hours of operation. While Uber envisions twenty-five miles as its shortest flight (think Malibu to downtown Los Angeles), these requirements allow you to leap from northern San Diego to southern San Francisco in a single bound. Uber already has five partners who have committed to delivering eVTOLs that meet these specs, with another five or ten still to come.
But the vehicles alone won’t make car ownership irrational. Uber has also partnered with NASA and the FAA to develop an air traffic management system to coordinate their flying fleet. They’ve also teamed up with architects, designers, and real estate developers to design a string of “mega-skyports” needed for passengers to load and unload and for vehicles to take off and land. Just like with the flying cars, Uber doesn’t want to own these skyports, they want to lease them. Once again, they have very specific needs. To qualify as Uber-ready, a mega-skyport must be able to recharge vehicles in seven to fifteen minutes, handle one thousand takeoffs and landings per hour (four thousand passengers), and occupy no more than three acres of land—which is small enough to sit atop old parking garages or on the roofs of skyscrapers.
Put all this together, and by 2027 or so, you’ll be able to order up an aerial rideshare as easily as you do an Uber today. And by 2030, urban aviation could be a major mode of getting from A to B.
But all of this raises a fundamental question: Why now? Why, in the late spring of 2018, are flying cars suddenly ready for prime time? What is it about this particular moment in history that has turned one of our oldest science fiction fantasies into our latest reality?
After all, we’ve been dreaming of Blade Runner hover cars and Back to the Future DeLorean DMC-12s for millennia. Vehicles capable of flight date back to the “flying chariots” in the Ramayana, an eleventh-century Hindu text. Even the more modern incarnations—that is, ones built around the internal combustion engine—have been around for a while. The 1917 Curtiss Autoplane, the 1937 Arrowbile, the 1946 Airphibian, the list goes on. There are over a hundred different patents on file in the US for “roadable aircraft.” A handful have flown. Most have not. None have delivered on the promise of The Jetsons.
In fact, our ire at this lack of delivery has become a meme unto itself. At the turn of the last century, in a now famous IBM commercial, comedian Avery Brooks asked: “It’s the year 2000, but where are the flying cars? I was promised flying cars. I don’t see any flying cars. Why? Why? Why?” In 2011, in his “What Happened to the Future?” manifesto, investor Peter Thiel echoed this concern, writing: “We wanted flying cars, instead we got 140 characters.”
Yet, as should be clear by now, the wait is over. The Flying Cars Are Here. And the infrastructure’s coming fast. While we were sipping our lattes and checking our Instagram, science fiction became science fact. And this brings us back to our initial question: Why now?
The answer, in a word: Convergence.

Converging Technology

If you want to understand convergence, it helps to start at the beginning. In our earlier books, Abundance and BOLD, we introduced the notion of exponentially accelerating technology; that is, any technology that doubles in power while dropping in price on a regular basis. Moore’s Law is the classic example. In 1965, Intel founder Gordon Moore noticed that the number of transistors on an integrated circuit had been doubling every eighteen months. This meant every year-and-a-half computers got twice as powerful, yet their cost stayed the same.
Moore thought this was pretty astounding. He predicted this trend might last a few more years, maybe five, possibly ten. Well, it’s been twenty, forty, going on sixty years. Moore’s Law is the reason the smartphone in your pocket is a thousand times smaller, a thousand times cheaper, and a million times more powerful than a supercomputer from the 1970s.
And it’s not slowing down.
Despite reports that we are approaching the heat death of Moore’s Law—which we’ll address in the next chapter—in 2023 the average thousand-dollar laptop will have the same computing power as a human brain (roughly 1016 cycles per second). Twenty-five years after that, that same average laptop will have the power of all the human brains currently on Earth.
More critically, it’s not just integrated circuits that are progressing at this rate. In the 1990s, Ray Kurzweil, the director of engineering at Google and Peter’s cofounding partner in Singularity University, discovered that once a technology becomes digital—that is, once it can be programmed in the ones and zeroes of computer code—it hops on the back of Moore’s Law and begins accelerating exponentially.
In simple terms, we use our new computers to design even faster new computers, and this creates a positive feedback loop that further accelerates our acceleration—what Kurzweil calls the “Law of Accelerating Returns.” The technologies now accelerating at this rate include some of the most potent innovations we have yet dreamed up: quantum computers, artificial intelligence, robotics, nanotechnology, biotechnology, material science, networks, sensors, 3-D printing, augmented reality, virtual reality, blockchain, and more.
But all of this progress, however radical it may seem, is actually old news. The new news is that formerly independent waves of exponentially accelerating technology are beginning to converge with other independent waves of exponentially accelerating technology. For example, the speed of drug development is accelerating, not only because biotechnology is progressing at an exponential rate, but because artificial intelligence, quantum computing, and a couple other exponentials are converging on the field. In other words, these waves are starting to overlap, stacking atop one another, producing tsunami-sized behemoths that threaten to wash away most everything in their path.
When a new innovation creates a new market and washes away an existing one, we use the term “disruptive innovation” to describe it. When silicon chips replaced vacuum tubes at the beginning of the digital age, this was a disruptive innovation. Yet, as exponential technologies converge, their potential for disruption increases in scale. Solitary exponentials disrupt products, services, and markets—like when Netflix ate Blockbuster for lunch—while convergent exponentials wash away products, services, and markets, as well as the structures that support them.
But we’re getting ahead of ourselves. The rest of this book is devoted to these forces and their rapid and revolutionary impact. Before we dive deeper into that tale, let’s first examine convergence through a more manageable lens, returning to our initial question about flying cars: Why now?
To answer that, let’s examine the three basic requirements any Uber eVTOL will have to meet: safety, noise, and price. Helicopters, which are the closest model anyone has for a flying car, have been around for nearly eighty years—Igor Sikorsky built the world’s first one in 1939—yet they can’t come close to satisfying these requirements. Besides being loud and expensive, they have that bad habit of falling out of the sky. So why are Bell, Uber, Airbus, Boeing, and Embraer—just to name a few—bringing aerial taxis to market today?
Once again: Convergence.
Helicopters are loud and dangerous because they use a single gargantuan rotor to generate lift. Unfortunately, the tip-speed of that single rotor produces exactly the right thud-thud-thud frequency to annoy pretty much anyone with ears. And they’re dangerous because, if that rotor fails, well, gravity plays for keeps.
Now imagine, instead of one main rotor overhead, a bunch of smaller rotors—like a row of small fans beneath a plane’s wing—whose combination generates enough lift to fly, but pumps out a lot less noise. Better yet, imagine if this multi-rotor system could fail gracefully, landing safely even if a couple rotors stopped working at once. Add to this design a single wing that enables speeds of 150 mph or more. All great ideas, except, thanks to their terrible power-to-weight ratios, gasoline-powered engines make none of this possible.
Enter distributed electric propulsion, or DEP for short.
Over the past decade, a surge in demand for commercial and military drones has pushed roboticists (and drones are just flying robots) to envision a new kind of electromagnetic motor: extremely light, stealthily quiet, and capable of carrying heavy loads. To design that motor, engineers relied on a trilogy of converging techs: first, machine learning advances that allowed them to run enormously complicated flight simulations, then materials science breakthroughs that let them create parts both light enough for flying and durable enough for safety, and last, new manufacturing techniques—3-D printing—that can create these motors and rotors at any scale. And talk about functionality: These electric engines are 95 percent efficient compared to gasoline’s 28 percent.
But flying a DEP system is another story. Adjusting a dozen motors in microsecond intervals is beyond a human pilot’s skill. DEP systems are “fly-by-wire”—that is, computer controlled. And what produces that level of control? Another swarm of converging technologies.
First, an AI revolution gave us the computational processing horsepower to take in an ungodly amount of data, make sense of it in microseconds, and manipulate a multitude of electric motors and aircraft control surfaces accordingly, in real time. Second, to sweep in all that data, you need to replace the pilot’s eyes and ears with sensors capable of processing gigabits of information at once. That means GPS, LIDAR, radar, an advanced visual imaging suite, and a plethora of microscopic accelerometers—many of which are the dividends of a decade of smartphone wars.
Finally, you’ll need batt...

Table of contents