Medical Physics and Biomedical Engineering
eBook - ePub

Medical Physics and Biomedical Engineering

  1. 768 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Medical Physics and Biomedical Engineering

About this book

Medical Physics and Biomedical Engineering provides broad coverage appropriate for senior undergraduates and graduates in medical physics and biomedical engineering. Divided into two parts, the first part presents the underlying physics, electronics, anatomy, and physiology and the second part addresses practical applications. The structured approach means that later chapters build and broaden the material introduced in the opening chapters; for example, students can read chapters covering the introductory science of an area and then study the practical application of the topic. Coverage includes biomechanics; ionizing and nonionizing radiation and measurements; image formation techniques, processing, and analysis; safety issues; biomedical devices; mathematical and statistical techniques; physiological signals and responses; and respiratory and cardiovascular function and measurement. Where necessary, the authors provide references to the mathematical background and keep detailed derivations to a minimum. They give comprehensive references to junior undergraduate texts in physics, electronics, and life sciences in the bibliographies at the end of each chapter.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Medical Physics and Biomedical Engineering by B.H Brown,R.H Smallwood,D.C. Barber,P.V Lawford,D.R Hose in PDF and/or ePUB format, as well as other popular books in Medicine & Physics. We have over one million books available in our catalogue for you to explore.

Information

Publisher
CRC Press
Year
2017
eBook ISBN
9781351991810
Edition
1
Subtopic
Physics
Index
Physics

Chapter 1

Biomechanics

1.1 Introduction and Objectives

In this chapter we will investigate some of the biomechanical systems in the human body. We shall see how even relatively simple mechanical models can be used to develop an insight into the performance of the system. Some of the questions that we shall address are listed below.
  • What sorts of loads are supported by the human body?
  • How strong are our bones?
  • What are the engineering characteristics of our tissues?
  • How efficient is the design of the skeleton, and what are the limits of the loads that we can apply to it?
  • What models can we use to describe the process of locomotion? What can we do with these models?
  • What are the limits on the performance of the body?
  • Why can a frog jump so high?
The material in this chapter is suitable for undergraduates, graduates and the more general reader.

1.2 Properties Of Materials

1.2.1 Stress/strain relationships: the constitutive equation

If we take a rod of some material and subject it to a load along its axis we expect that it will change in length. We might draw a load/displacement curve based on experimental data, as shown in figure 1.1.
We could construct a curve like this for any rod, but it is obvious that its shape depends on the geometry of the rod as much as on any properties of the material from which it is made. We could, however, chop the rod up into smaller elements and, apart from difficulties close to the ends, we might reasonably assume that each element of the same dimensions carries the same amount of load and extends by the same amount. We might then describe the displacement in terms of extension per unit length, which we will call strain (Δ), and the load in terms of load per unit area, which we will call stress (σ). We can then redraw the load/displacement curve as a stress/strain curve, and this should be independent of the dimensions of the bar. In practice we might have to take some care in the design of a test specimen in order to eliminate end effects.
The shape of the stress/strain curve illustrated in figure 1.2 is typical of many engineering materials, and particularly of metals and alloys. In the context of biomechanics it is also characteristic of bone, which is studied in more detail in section 1.2.2. There is a linear portion between the origin O and the point Y. In this region the stress is proportional to the strain. The constant of proportionality, E, is called Young’s modulus,
Images
Figure 1.1 Load/displacement curve: uniaxial tension.
Images
Figure 1.2 Stress/strain curve: uniaxial tension.
σ = EΔ.
The linearity of the equivalent portion of the load/displacement curve is known as Hooke’s law.
For many materials a bar loaded to any point on the portion OY of the stress/strain curve and then unloaded will return to its original unstressed length. It will follow the same line during unloading as it did during loading. This property of the material is known as elasticity. In this context it is not necessary for the curve to be linear: the important characteristic is the similarity of the loading and unloading processes. A material that exhibits this property and has a straight portion OY is referred to as linear elastic in this region. All other combinations of linear/nonlinear and elastic/inelastic are possible.
The linear relationship between stress and strain holds only up to the point Y. After this point the relationship is nonlinear, and often the slope of the curve drops off very quickly after this point. This meansthat the material starts to feel ‘soft’, and extends a great deal for little extra load. Typically the point Y represents a critical stress in the material. After this point the unloading curve will no longer be the same as the loading curve, and upon unloading from a point beyond Y the material will be seen to exhibit a permanent distortion. For this reason Y is often referred to as the yield point (and the stress there as the yield stress), although in principle there is no fundamental reason why the limit of proportionality should coincide with the limit of elasticity. The portion of the curve beyond the yield point is referred to as the plastic region.
The bar finally fractures at the point U. The stress there is referred to as the (uniaxial) ultimate tensile stress (UTS). Often the strain at the point U is very much greater than that at Y, whereas the ultimate tensile stress is only a little greater (perhaps by up to 50%) than the yield stress. Although the material does not actually fail at the yield stress, the bar has suffered a permanent strain and might be regarded as being damaged. Very few engineering structures are designed to operate normally above the yield stress, although they might well be designed to move into this region under extraordinary conditions. A good example of post-yield design is the ‘crumple zone’ of an automobile, designed to absorb the energy of a crash. The area under the load/displacement curve, or the volume integral of the area under the stress/strain curve, is a measure of the energy required to achieve a particular deformation. On inspection of the shape of the curve it is obvious that a great deal of energy can be absorbed in the plastic region.
Materials like rubber, when stretched to high strains, tend to follow very different loading and unloading curves. A typical example of a uniaxial test of a rubber specimen is illustrated in figure 1.3. This phenomenon ...

Table of contents

  1. Cover
  2. Half Title
  3. Title Page
  4. Copyright Page
  5. Table of Contents
  6. PREFACE
  7. PREFACE TO ‘MEDICAL PHYSICS AND PHYSIOLOGICAL MEASUREMENT’
  8. NOTES TO READERS
  9. ACKNOWLEDGMENTS
  10. 1 BIOMECHANICS
  11. 2 BIOFLUID MECHANICS
  12. 3 PHYSICS OF THE SENSES
  13. 4 BIOCOMPATIBILITY AND TISSUE DAMAGE
  14. 5 IONIZING RADIATION: DOSE AND EXPOSURE-MEASUREMENTS, STANDARDS AND PROTECTION
  15. 6 RADIOISOTOPES AND NUCLEAR MEDICINE
  16. 7 ULTRASOUND
  17. 8 NON-IONIZING ELECTROMAGNETIC RADIATION: TISSUE ABSORPTION AND SAFETY ISSUES
  18. 9 GAINING ACCESS TO PHYSIOLOGICAL SIGNALS
  19. 10 EVOKED RESPONSES
  20. 11 IMAGE FORMATION
  21. 12 IMAGE PRODUCTION
  22. 13 MATHEMATICAL AND STATISTICAL TECHNIQUES
  23. 14 IMAGE PROCESSING AND ANALYSIS
  24. 15 AUDIOLOGY
  25. 16 ELECTROPHYSIOLOGY
  26. 17 RESPIRATORY FUNCTION
  27. 18 PRESSURE MEASUREMENT
  28. 19 BLOOD FLOW MEASUREMENT
  29. 20 BIOMECHANICAL MEASUREMENTS
  30. 21 IONIZING RADIATION: RADIOTHERAPY
  31. 22 SAFETY-CRITICAL SYSTEMS AND ENGINEERING DESIGN: CARDIAC AND BLOOD-RELATED DEVICES
  32. GENERAL BIBLIOGRAPHY
  33. INDEX