Finite Difference Methods in Heat Transfer
eBook - ePub

Finite Difference Methods in Heat Transfer

M. Necati Özişik, Helcio R. B. Orlande, Marcelo J. Colaço, Renato M. Cotta

Share book
  1. 580 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Finite Difference Methods in Heat Transfer

M. Necati Özişik, Helcio R. B. Orlande, Marcelo J. Colaço, Renato M. Cotta

Book details
Book preview
Table of contents
Citations

About This Book

Finite Difference Methods in Heat Transfer, Second Edition focuses on finite difference methods and their application to the solution of heat transfer problems. Such methods are based on the discretization of governing equations, initial and boundary conditions, which then replace a continuous partial differential problem by a system of algebraic equations. Finite difference methods are a versatile tool for scientists and for engineers. This updated book serves university students taking graduate-level coursework in heat transfer, as well as being an important reference for researchers and engineering.

Features

  • Provides a self-contained approach in finite difference methods for students and professionals
  • Covers the use of finite difference methods in convective, conductive, and radiative heat transfer
  • Presents numerical solution techniques to elliptic, parabolic, and hyperbolic problems
  • Includes hybrid analytical–numerical approaches

Frequently asked questions

How do I cancel my subscription?
Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
Can/how do I download books?
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
What is the difference between the pricing plans?
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
What is Perlego?
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Do you support text-to-speech?
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Is Finite Difference Methods in Heat Transfer an online PDF/ePUB?
Yes, you can access Finite Difference Methods in Heat Transfer by M. Necati Özişik, Helcio R. B. Orlande, Marcelo J. Colaço, Renato M. Cotta in PDF and/or ePUB format, as well as other popular books in Physical Sciences & Energy. We have over one million books available in our catalogue for you to explore.

Information

Publisher
CRC Press
Year
2017
ISBN
9781351349918
Edition
2
Subtopic
Energy
1
Basic Relations
Numerical methods are useful for solving fluid dynamics, heat and mass transfer problems, and other partial differential equations of mathematical physics when such problems cannot be handled by exact analysis techniques because of nonlinearities, complex geometries, and complicated boundary conditions. The development of high-speed digital computers significantly enhanced the use of numerical methods in various branches of science and engineering. Many complicated problems can now be solved at a very little cost and in a very short time with the available computing power.
Presently, the finite difference method (FDM), the finite volume method (FVM), and the finite-element method (FEM) are widely used for the solution of partial differential equations of heat, mass, and momentum transfer. Extensive amounts of literature exist on the application of these methods for the solution of such problems. Each method has its advantages depending on the nature of the physical problem to be solved, but there is no best method for all problems. For instance, the dimension of the problem is an important factor that deserves some consideration because an efficient method for one-dimensional problems may not be so efficient for two- or three-dimensional problems. FDMs are simple to formulate and can readily be extended to two- or three-dimensional problems. Furthermore, FDM is very easy to learn and apply for the solution of partial differential equations encountered in the modeling of engineering problems for simple geometries. For problems involving irregular geometries in the solution domain, the FEM is known for having more flexibility because the region near the boundary can readily be divided into subregions. A major drawback of FDM used to be its difficulty to handle effectively the solution of problems over arbitrarily-shaped complex geometries because of interpolation between the boundaries and the interior points, in order to develop finite difference expressions for nodes next to the boundaries. More recently, with the advent of numerical grid generation approaches, the FDM has become comparable to FEM in dealing with irregular geometries, while still maintaining the simplicity of the standard FDM.
In this book, we ...

Table of contents