
eBook - ePub
Agricultural Internet of Things and Decision Support for Precision Smart Farming
- 470 pages
- English
- ePUB (mobile friendly)
- Available on iOS & Android
eBook - ePub
Agricultural Internet of Things and Decision Support for Precision Smart Farming
About this book
Agricultural Internet of Things and Decision Support for Smart Farming reveals how a set of key enabling technologies (KET) related to agronomic management, remote and proximal sensing, data mining, decision-making and automation can be efficiently integrated in one system. Chapters cover how KETs enable real-time monitoring of soil conditions, determine real-time, site-specific requirements of crop systems, help develop a decision support system (DSS) aimed at maximizing the efficient use of resources, and provide planning for agronomic inputs differentiated in time and space. This book is ideal for researchers, academics, post-graduate students and practitioners who want to embrace new agricultural technologies.
- Presents the science behind smart technologies for agricultural management
- Reveals the power of data science and how to extract meaningful insights from big data on what is most suitable based on individual time and space
- Proves how advanced technologies used in agriculture practices can become site-specific, locally adaptive, operationally feasible and economically affordable
Frequently asked questions
Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Agricultural Internet of Things and Decision Support for Precision Smart Farming by Annamaria Castrignano, Gabriele Buttafuoco, Raj Khosla, Abdul Mouazen, Dimitrios Moshou, Olivier Naud, Annamaria Castrignano,Gabriele Buttafuoco,Raj Khosla,Abdul Mouazen,Dimitrios Moshou,Olivier Naud in PDF and/or ePUB format, as well as other popular books in Business & Agribusiness. We have over one million books available in our catalogue for you to explore.
Information
Chapter 1
Introduction to agricultural IoT
Lucio Colizzi 1 , Danilo Caivano 1 , Carmelo Ardito 1 , Giuseppe Desolda 1 , Annamaria Castrignanò 2 , 3 , Maristella Matera 4 , Raj Khosla 5 , Dimitrios Moshou 6 , Kun-Mean Hou 7 , François Pinet 8 , Jean-Pierre Chanet 8 , Gao Hui 9 , and Hongling Shi 9 1 Computer Science Department, University of Bari Aldo Moro, Bari, Italy 2Council for Agricultural Research and Economics, Bari, Italy 3 National Research Council of Italy, Water Research Institute, Bari, Italy 4 Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Milano, Italy 5 Department of Soil & Crop Sciences, Colorado State University, Fort Collins, CO, United States 6 Agricultural Engineering Laboratory - Faculty of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece 7 ISIMA, LIMOS, University of Clermont-Ferrand, Aubière, France 8 Irstea - Centre de Clermont-Ferrand - UR TSCF, Aubière, France 9 University Clermont Auvergne, LIMOS UMR 6158 CNRS, France
Abstract
Significant challenges will have to be overcome to achieve the level of agricultural productivity necessary to meet the predicted world demand for food, feed, fibre and fuel in 2050. Although agriculture has met significant challenges in the past, targeted increases in productivity will have to be made by 2050, in the face of stringent constraints including limited resources, less skilled labour, limited amount of arable land and changing climate, among others. Currently, agriculture production accounts for over 70% of freshwater consumption and unsustainable levels of chemical consumption for crop production. In the hyperconnected world, where people, computers and physical objects cooperate to solve complex tasks, a big amount of data and information rises rapidly and a critical aspect is to manage that knowledge to make the right decision at the right time and the right place. Also, farming has to become SMART adopting a new vision of the primary production sector where the development processes are based on the integration of information and communications technologies and Internet of Things technologies in a secure fashion to manage the rural assets and optimization of agronomic inputs such as water, fertilizer, agrochemical or soil tillage and to enhance input use efficiency, output or production and profitability in a sustainable manner. In this vision, the land becomes a substrate where different kinds of sensors could acquire heterogeneous data. Those sensors are connected in a sort of rural network in turn linked to the Internet network. The real-time streaming data are stored in complex database containing all the necessary knowledge about the land characteristics. Intelligent programmes connected with the knowledge base run to make real-time decisions, sending acting messages to the domotic back-end system or suggestions to the farmer.
Keywords
Arduino; Internet of things; Open source platform; Raspberry pi; Sensors; Smart farming; Smart object
1.1. Introduction section: an integrated view on precision smart farming from a multidisciplinary perspective
According to the recent report by FAO, the world's population will surpass 9.0 billion people by year 2050 (FAO, 2009). Significant challenges will have to be overcome to achieve the level of agricultural productivity necessary to meet the predicted world demand for food, feed, fibre and fuel in 2050. Although agriculture has met significant challenges in the past, targeted increases in productivity will have to be made by 2050, in the face of stringent constraints including limited resources, less skilled labour, limited amount of arable land and changing climate, among others. For most of the 20th century, many key factors influenced increases in the rate of crop production, primarily mechanization, improved genetics and increased use of inputs. However, such increase in crop production came at a cost of overapplication of various agricultural inputs, i.e., irrigation, nutrients and pesticides. The use of resource-intensive, high-input agriculture around the world led to depletion of soils, water scarcity, widespread deforestation and high levels of greenhouse gas emissions (FAO, 2017; NASEM, 2019 ). Currently, agriculture production accounts for over 70% of freshwater consumption and unsustainable levels of chemical consumption for crop production. Hence, sustainability in agriculture is a must that is becoming a need due not only to the scarceness of natural resources and the growth of population but also for the growing attention deserved to well-being and green lifestyle. Agriculture needs to provide effective solutions to old and new challenges to embrace the insights from other disciplines and use them in an integrated way.
Precision agriculture (PA) presents itself as one among many solutions to the grand challenges that agriculture and our world are currently facing. PA has been around for the past three decades and has established itself as a management approach that harnesses the heterogeneity in both space and time and in production fields to deploy its simple yet effective approach of applying the right input at the right time, at the right place, in the right amount and in the right manner—the five 'R' concept of PA (Khosla, 2010). Over the years, PA has grown worldwide and is slowly embracing newer technologies that are autonomous, disruptive and data-intensive. The first decade of PA had a strong focus on Global Navigation Satellite Services (GNSS) and its ability to locate and quantify spatial variability in soils. The second decade focused on tractor automation and developing technologies that would allow precision management of inputs, such as crop nutrients. Now, in its third decade, there is an exponential increase in collection of location-based agricultural data via suite of sensors and sensing devices that created a new paradigm of making management decision based on evidence for higher degree of precision management. Hence, the success of future far...
Table of contents
- Cover image
- Title page
- Table of Contents
- Copyright
- Contributors
- Preface
- Chapter 1. Introduction to agricultural IoT
- Chapter 2. Monitoring
- Chapter 3. Data processing
- Chapter 4. Support to decision-making
- Chapter 5. Smart action
- Chapter 6. Economic, environmental and social impacts
- Chapter 7. Precision farming and IoT case studies across the world
- Subject Index
- Author Index