Longevity and omega-3 fatty acids are directly affected by smoking cessation, caloric restriction, environmental factors, and genetics and genomics. Accumulating evidence through tentative studies with these dynamics has reinforced the notion that there is a correlation between omega-3 fatty acids and longevity and that a longer life span can be achieved with increased consumption of fish oils. Engaging in lifestyle practices such as caloric restriction and smoking cessation can greatly decrease chances of major diseases such as cancer and cardiovascular disease and thus increase global longevity.
Keywords
Longevity; Omega-3; Fish Oils; Genomics; Genetics; Caloric Restriction; Environment; Smoking Cessation
Introduction
The average life span for a human being is 78 years of age. Longevity is generally defined as duration of life, an individualās life span. There are many different contributory factors that develop someoneās longevity including behavior, diet, exercise, and overall health. Further extending the average human life expectancy will be a very profound advance for science as well as the world. Longevity in humans may also be enhanced by omega-3 fatty acids. Omega-3 fatty acids are found in the oils of fish, algae, squid, and a few diverse plants. They have many health benefits, are considered to be āessentialā fatty acids to the body, and are depressed by omega-6 fatty acids. This review will investigate the key factors that affect longevity, focusing on omega-3 fatty acids.
Longevity
Life expectancy is a major factor in human progression. Historically, the human population has had a very low life expectancy. The increasingly aging nature of populations is a current phenomenon in most western societies. Evidence for this is given by the large increases in the number of older (85 years or older) humans (Waite, 2004), the increase in the number of centenarians (Robine and Paccaud, 2005), along with steady recordings of maximum-recorded life span (Wilmoth, 2000). These facts have contributed to an increased interest in the question of what really causes us to live longer. Longevity is defined as the capability to survive past the average age of death (De Benedictis and Franceschi, 2006). Developed countries such as Japan have the highest life expectancy rate, much higher than many African nations. Japan has an average life expectancy of 82 years of age, whereas Nigeria has a life expectancy of 50 years of age. A variety of different studies describe how longevity has changed over the past 200 years. The mysteries of longevity have always been looked into as something that is both interesting and fascinating. Ultimately, longevity has been shown to be the result of a combination of many contributory factors. Trends also differ depending on the time and situation within different regions.
As the baby boomer generation of the 1960s ages, increasing attention is being given to the study of longevity (Myers and Ryu, 2008). The increase in the worldwide proportion of the population that is elderly is a major economic and healthcare issue. There is more information available now to help us define how longevity has come about. How are centenarians able to escape the ailments present in aging? The elderly populace in the United States is growing in size, unsettling the declining death rates, growing life expectancy, and the aging of baby boomers (Rice and Fineman, 2004). Although the prevalence of chronic illnesses and disabilities has now increased with age, successful aging in the elderly population is widespread, and the elderly populace is generally healthy (Rice and Fineman, 2004).
Deciphering the reasons for longevity uncovers a variety of different perspectives. Some of the primary factors affecting longevity include: staying smoke-free, exercising, eating healthily, getting a healthy amount of sleep, staying mentally and physically active, along with consumption of healthy foods and dietary supplements (Rice and Fineman, 2004). This review will investigate a food and dietary supplement known as omega-3 fatty acids and will look at how this modifies longevity. The intake of omega-3 fatty acids may play a key role in assessing an individualās life span. How can longevity be enhanced by fish oils, and what has been discovered from recent studies about it? And do fatty acids really have a key role in health and longevity enhancement?
Food Restriction for Enhanced Longevity
Experimental data has indicated that oxidative stress contributes to processes related to aging and to the pathogenesis of many age-related diseases (Mecocci et al., 2000). Vitamins along with antioxidant enzymes have an important role in protecting the body from oxidative stress (Mecocci et al., 2000). Records show that most centenarians have lived very healthy lifestyles (Longo and Finch, 2003). Restriction of the number of calories consumed is associated with extending longevity for many organisms (Longo and Finch, 2003). This association is quite clear due to how they are able to exercise daily, and along with being able to live a smoke- and alcohol-free lifestyle. With improvements in nutritional choices available, there may well be a great increase in the numbers of centenarians in the near future.
A major problem facing many western societies today is obesity (Van Itallie, 1979). The bodyās fat content, as well as its proportion of fat (triglyceride levels), continues to increase with age (Van Itallie, 1979). Levels of dietary omega-6 fatty acids are also increasing and these are a risk factor for premature death. Obesity is developed by diets that are calorically dense (Van Itallie, 1979), and which thus increase overall morbidity in an individualās system. With increasing rates of obesity, many people diet in an attempt to lose weight. However, nutrition offers the most effective means to improve health and overall well-being for successful aging and longevity (Van Itallie, 1979). Nutrition is a major determinant for longevity in centenarians and potential centenarians. Adequate nutrition is a major factor in determining how an individual progresses through their day mentally and physically (Van Itallie, 1979).
In contrast, it is also the case that inadequate nutrition on a daily basis impairs an individualās ability to be productive. Insufficient functioning has also been associated with progressive onset of diseases over time. Increased obesity and caloric intake has also been associated with exacerbation of diseases and disorders such as cardiovascular disease, diabetes, and cancer (Van Itallie, 1979).
Calorie Restriction for Longevity
Caloric restriction remains the most highly researched, non-genetic intervention in order to improve health and also increase life span in a wide variety of organisms ranging from single-celled yeast organisms all the way to non-human primate models (Wilson et al., 2008). The benefits that are shown to come from having good health and longevity are directly proportional to the amount of caloric restriction an organism undergoes. Caloric restriction can also be considered a very dangerous issue, however, especially since it can sometimes lead to malnutrition (Kaiser et al., 2012). A major phenotype that is noticed among all organisms undergoing caloric restriction is the reduction of overall body weight as well as body fat (Sullivan and Cameron, 2010). When rodents are studied for longevity tests, there are many that go through a great deal of age-associated obesity, and this is even true when they are fed with a low-fat diet. When the rodents are fed a high-fat diet, they are shown to have a diet-induced obesity response similar to that expected of human beings who over-consume a calorie-rich diet (Kaiser et al., 2012).
With switching from a low-fat to a calorie-rich diet, caloric restriction is shown to have an induced, rapid weight loss effect as well. The transition from a ānegative energy balanceā is shown to continually equalize to the point that the reduced body weights are now entered into a normal energy balance (Kaiser et al., 2012). The body weight, as well as the body composition changes that are correlated with that of caloric restriction, are shown to be more long term overall, rather than a temporary effect that is experienced with the initial beginnings of caloric restriction (Kaiser et al., 2012). In rodent studies, caloric restriction was found to decrease the levels of overall plasma glucose and insulin-like growth factors (Longo and Finch, 2003). This is also associated with postponing cancer, inflammation, and immunosenescence without side effects occurring in the body (Longo and Finch, 2003). Organisms from yeast to mice have had mutations developing due to the insulin-like growth factors signaling pathways throughout their system (Longo and Finch, 2003). Results of the tests found that this signaling from the growth factors was associated with extending the life span but had also been known to cause fat accumulation throughout the body (Longo and Finch, 2003).
Smoking and Reduced Longevity
Smoking cessation is a very important step in living a healthy lifestyle and in avoiding major issues later in life. Smoking still remains the leading cause of preventable death in the United States (McGinnis and Foege, 1993). Roughly 45 million Americans and 1.2 billion people worldwide use tobacco (Taylor et al., 2002). Smoking cessation has been shown to have well-documented health benefits (Taylor et al., 2002). Once someone quits smoking, the risk of lung cancer will decrease dramatically (Taylor et al., 2002). Recent studies from the UK have found that 90% of excess mortality attributable to cigarette smoking can be avoided if people quit before middle age is reached (Darby et al., 2000). With the decrease in the risk of lung cancer and overall mortality, overall longevity will increase significantly for individuals who undertake smoking cessation.
Smoking cessation is shown to substantially reduce mortality risk and therefore increase longevity (Taylor et al., 2002). With the many risks of death that are associated with smoking, there are many different ways in which the mortality risk can decrease with smoking cessation (Freeman et al., 2006). Longevity improves due to the fact that smoking cessation gradually increases an individualās life expectancy. Dietary restrictions persist as cessation begins, and omega-3 fatty acids thus play a key role in this process. The health benefits of omega-3 fatty acids are very important for patients that have psychiatric disorders due to high rates of smoking and obesity (Freeman et al., 2006). The levels of omega-3 fatty acids are lower in smokers than non-smokers, partly due to the severity of the psychiatric symptoms adversely affecting the smokersā diets, self-care, and overall life span (Freeman et al., 2006).
Genetics, a Key Modifier of Longevity
Longevity can be present amongst genetic factors through lifestyle alternatives, especially through individual and heritable genetics (Sebastiani et al., 2012). Considerable life span extensions have been found from organisms as diverse as yeast, worms, fish, flies, and even rodents (Slagboom et al., 2011). All of these models have shown life span extension mainly due to control through dietary restriction and genetic manipulation (Kenyon, 2010). There are numerous genetic pathways that can indicate longevity is stimulated through the influence of metabolism and the opposition of oxidative stress (Slagboom et al., 2011). A major challenge with this is how genetic variations have a great deal of range between each organism, and the complexity here is how each phenotype can contain the information as well.
Genetics has also been shown to have a major effect on longevity. There has been a substantial difference identified between the genetics of aging and the genetics of longevity (Sebastiani et al., 2012). There have been a large number of studies into longevity concerned with how the genetic variations are associated with each other (Sebastiani et al., 2012). Depending on the average genetic variations for a human being, most people can live up to their eighties or nineties. It is due to the significant impact of such genetic factors that people are not able to become more adaptive with their age (Sebastiani et al., 2012). Human society has shown considerable variation in mortality and longevity characteristics, and yet it has also shown a common increase in the average life expectancy in the past tw...