CHAPTER 1 Legislation on Food Irradiation: European Union, United States, Canada, and Australia
Ioannis S. Arvanitoyannis, Persephoni Tserkezou
1.1 Introduction
Irradiation is a physical treatment in which food is exposed to a defined dose of ionizing radiation and is used on more than 60 food types in more than 40 countries worldwide. Irradiation of food can control insect infestation, reduce the numbers of pathogenic or spoilage microorganisms, and delay or eliminate natural biological processes such as ripening, germination, or sprouting in fresh food. Like all preservation methods, irradiation should supplement rather than replace good food hygiene, handling, and preparation practices (Food Safety Authority of Ireland [FSAI], 2005).
In 1986, 1992, and 1998, the Scientific Committee on Food (SCF) expressed favorable opinions on irradiation of fruit, vegetables, cereals, starchy tubers, spices and condiments, fish, shellfish, fresh meats, poultry, camembert from raw milk, frog legs, gum arabic, casein/caseinates, egg white, cereal flakes, rice flour, and blood products. The SCF emphasized that food irradiation must not be used to cover negligence in handling foodstuffs or to mask their unsuitability for use as food (European Union [EU], 2007).
Food irradiation is the exposure of food to a form of energy called ionizing radiation. The technique is used to reduce the losses of spoilage and to control microbes and other organisms in food (Confederation of British Industry, 2007). Radiation is an energy form traveling through space (radiant energy) in a wave pattern and can either be naturally occurring (e.g., from the sun or rocks) or produced by man-made objects (e.g., microwaves and television sets). The frequency or wavelength of the energy waves produced by different sources distinguishes the different types and functionality of radiation, with high-frequency radiation of UV, X-rays, and gamma-rays posing the most significant risk to human health (FSAI, 2005). In specific cases, irradiation of food is permitted. In the EU, this is regulated by EU Directives 1999/2/EC and 1999/3/EC (EU, 2007).
Food irradiation in the United States is primarily regulated by the Food and Drug Administration (FDA, 1986) because it is considered a food additive. Other federal agencies that regulate aspects of food irradiation include the U.S. Department of Agriculture/Food Safety and Inspection Service (2006), which regulates meat and poultry products and fresh fruit; the Nuclear Regulatory Commission, which regulates safety of the processing facility; and the Department of Transportation, which regulates the safe transport of the radioactive sources. Each new food is approved separately with a guideline specifying a maximum dosage; in case of quarantine applications, the minimum dose is regulated. Packaging materials containing the food processed by irradiation must also undergo approval (Wikipedia, 2008).
1.2 EU Legislation
Directive 1999/2/EC (entry into force March 10, 1999) applies to the manufacture, marketing, and importation of foods and food ingredients, hereafter called “foodstuffs,” treated with ionizing radiation. It does not apply to: (i) foodstuffs exposed to ionizing radiation generated by measuring or inspection devices, provided that the dose absorbed is not greater than 0.01 Gy for inspection devices that utilize neutrons and 0.5 Gy in other cases, at a maximum radiation energy level of 10 MeV in the case of X-rays, 14 MeV in the case of neutrons, and 5 MeV in other cases; and (ii) the irradiation of foodstuffs that are prepared for patients requiring sterile diets under medical supervision. Member States may maintain existing authorizations concerning the treatment of foodstuffs with ionizing radiation provided that: (i) the treatment of the foodstuff concerned has been subject to a favorable opinion of the SCF; (ii) the overall average absorbed radiation dose does not exceed the limit values recommended by the SCF; and (iii) ionizing radiation and placing on the market are effected in accordance with this directive. Foodstuffs may be treated only by the following sources of ionizing radiation: (i) gamma rays from radionuclides cobalt-60 (60Co) or cesium-137 (137Cs); (ii) X-rays generated from machine sources operated at or below a nominal energy (maximum quantum energy) level of 5 MeV; and (iii) electrons generated from machine sources operated at or below a nominal energy (maximum quantum energy) level of 10 MeV. Food irradiation may be used only for the following purposes: (i) to reduce the incidence of foodborne disease by destroying pathogenic organisms; (ii) to reduce spoilage of foodstuffs by retarding or arresting decay processes and destroying spoilage organisms; (iii) to reduce loss of foodstuffs by premature ripening, germination, or sprouting; and (iv) to get rid of foodstuffs of organisms harmful to plant or plant products. Member States shall inform the commission of the competent authority or authorities responsible for: (i) prior approval of irradiation facilities; (ii) the allocation of an official reference number for approved irradiation facilities; (iii) official control and inspection; and (iv) withdrawal or modification of approval. The labeling of foodstuffs treated with ionizing radiation shall be governed by the specific provisions. Such a foodstuff may not be imported from a third country unless it complies with the conditions that apply to those foodstuffs, is accompanied by documents showing the name and address of the facility that carried out the irradiation treatment, and was treated in an irradiation facility approved by the Community.
Directive 1999/3/EC (entry into force March 10, 1999) laid down the establishment of a Community initial positive list of food and food ingredients, which may be treated with ionizing radiation, together with the maximum doses authorized for the intended purpose. Treatment of the products in question with ionizing radiation may be carried out only in accordance with the provisions of the framework directive. The foodstuffs that may be treated with ionizing radiation are dried aromatic herbs, spices, and vegetable seasonings. The maximum overall average absorbed radiation dose should be 10 kilogray (kGy).
Regulation (EEC) No. 3954/87 (entry into force January 2, 1988) laid down the procedure for determining the maximum permitted levels of radioactive contamination of foodstuffs and of feeding stuffs that may be placed on the market following a nuclear accident or any other case of radiological emergency that is likely to lead to or has led to significant radioactive contamination of foodstuffs and feeding stuffs. For the purposes of this regulation, “foodstuffs” means products that are intended for human consumption either immediately or after processing, and “feeding stuffs” means products that are intended only for animal nutrition. In the event of the Commission receiving official information on accidents or on any other case of radiological emergency, substantiating that the maximum permissible levels are likely to be reached or have been reached, it will immediately adopt, if the circumstances so require, a regulation rendering applicable those maximum permissible levels. The period of validity of any regulation shall be as short as possible and shall not exceed 3 months. The regulation applies to baby foods, dairy products, liquid foodstuffs, and feedstuffs. There are maximum permitted levels for isotopes of strontium, notably 90Sr; isotopes of iodine, notably 131I; alpha-emitting isotopes of plutonium and transplutonium elements, notably 239Pu and 241Am; and for all other nuclides with a half-life greater than 10 days, notably 134Cs and 137Cs.
In Regulation (EEC) No. 2219/89 (entry into force July 25, 1989) the conditions for exporting foodstuffs and feeding stuffs after a nuclear accident or any other radiological situation likely to lead to significant radioactive contamination of foodstuffs and feedstuffs are laid down. Foodstuffs and feed stuffs in which the level of radioactive contamination exceeds the relevant maximum permitted levels may not be exported. The Member States shall carry out checks to ensure that the maximum permitted levels are observed. Each Member State shall communicate to the Commission the fullest information on the application of this regulation, and in particular on any cases in which the maximum permitted levels have been exceeded. The Commission shall forward this information to the other Member States.
Regulation (EEC) No. 737/90 (entry into force April 1, 1990) applies to milk and dairy products. The accumulated maximum radioactive level in terms of 134Cs and 137Cs shall be: (i) 370 Bq/kg for milk and milk products and for foodstuffs intended for the special feeding of infants during the first 4–6 months of life, which meet, in themselves, the nutritional requirements of this category of pers...