An in-depth text that explores the interface between analytical chemistry and trace evidence
Analytical Techniques in Forensic Science is a comprehensive guide written in accessible terms that examines the interface between analytical chemistry and trace evidence in forensic science. With contributions from noted experts on the topic, the text features a detailed introduction analysis in forensic science and then subsequent chapters explore the laboratory techniques grouped by shared operating principles. For each technique, the authors incorporate specific theory, application to forensic analytics, interpretation, forensic specific developments, and illustrative case studies.
Forensic techniques covered include UV-Vis and vibrational spectroscopy, mass spectrometry and gas and liquid chromatography. The applications reviewed include evidence types such as fibers, paint, drugs and explosives. The authors highlight data collection, subsequent analysis, what information has been obtained and what this means in the context of a case. The text shows how analytical chemistry and trace evidence can problem solve the nature of much of forensic analysis. This important text:
Puts the focus on trace evidence and analytical science
Contains case studies that illustrate theory in practice
Includes contributions from experts on the topics of instrumentation, theory, and case examples
Explores novel and future applications for analytical techniques
Written for undergraduate and graduate students in forensic chemistry and forensic practitioners and researchers, Analytical Techniques in Forensic Science offers a text that bridges the gap between introductory textbooks and professional level literature.
Frequently asked questions
Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, weāve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere ā even offline. Perfect for commutes or when youāre on the go. Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Analytical Techniques in Forensic Science by Rosalind Wolstenholme, Sue Jickells, Shari Forbes, Rosalind Wolstenholme,Sue Jickells,Shari Forbes in PDF and/or ePUB format, as well as other popular books in Medicina & Medicina forense. We have over one million books available in our catalogue for you to explore.
Sue Jickells, Rosalind Wolstenholme, and Shari Forbes
1.1 Forensic Science
Forensic science is typically defined as the application of science to the law; both criminal and civil law. Most people tend to associate forensic science with the investigation of crimes such as burglary; arson; possession of illegal drugs; drug trafficking; drink and drug driving offences; and attacks against the person including murder and sexual assault. However, forensic science is applied to the investigation of a far wider range of potential prosecutions including war crimes; fraud; medical incidents; doping offences in sport; environmental pollution incidents; road traffic accidents; maritime and aviation incidents; industrial incidents; and issues relating to food authenticity.
Potential scenarios which may result in prosecution through criminal or civil justice systems and which require some sort of forensic examination are almost limitless. (Note that, unless otherwise stated, the terms civil justice, civil law etc. will be used to describe the processes of being sued rather than meaning constitution based legal systems.)
Similarly, different countries have different judicial systems and different systems for investigating cases that may result in prosecution. Hence, it is difficult to discuss all possible types of scenarios, authorities and personnel involved in investigation and the processes to be used. Thus, the discussions which follow are based on some of the major types of crime prosecuted under the major types of criminal judicial system and how such crimes would be investigated, emphasising the analytical chemistry techniques associated with such investigations.
It is the job of those working in the field of forensic science to consider whether there is evidence that can provide information about a particular incident or situation. The Oxford Dictionary defines āevidenceā as āInformation drawn from personal testimony, a document, or a material object, used to establish facts in a legal investigation or admissible as testimony in a law courtā and āThe available body of facts or information indicating whether a belief or proposition is true or validā (https://en.oxforddictionaries.com/definition/evidence). When we use the term āevidenceā in this book, it implies these definitions. We have deliberately included both definitions because not all evidence that a scientist finds through their investigations will result in judicial proceedings. The evidence may have intelligence or investigative value proving, for example, that a suspect could not have committed a crime and hence no prosecution is brought against them. It might also be that the evidence obtained is sufficient in civil cases to persuade parties to make a settlement out of court or, in criminal cases, for a suspect to enter a āguiltyā plea such that there is no requirement for evidence obtained by a forensic scientist to be presented in court.
Evidence may be obtained through analysis, which is defined as āDetailed examination of the elements or structure of somethingā (https://en.oxforddictionaries.com/definition/analysis). Such analysis could be as simple as visual examination, for example, identifying flakes of paint on a car involved in a fatal āhit and runā incident. In some cases, the shape of the paint flake may provide sufficient evidence of provenance; fitting exactly the piece of paint missing from a car suspected of being involved in the incident (termed a physical fit). What if there is no physical fit but the surface colour of the paint flake appears to be similar to the colour of the suspect car? More in depth evidence is required, which entails a more sophisticated analysis to provide chemical information about the paint. This, together with information about the colours of the layers present and their thicknesses, will provide evidence as to whether or not the paint flake may originate from the suspect car.
This book is concerned with the analytical techniques used to provide information about the nature of the sample being investigated, with emphasis on techniques that provide information about the chemical nature of samples, or techniques that involve measuring a chemical property of the sample to provide evidence. These analytical techniques are used exceedingly widely in other fields but we concentrate on forensic science in this book because, as analytical chemists involved in the teaching of forensic science, we believe that a forensic scientist using such techniques should have a good understanding of them. This includes how the techniques work, the nature of the information obtained, as well as what this means in terms of interpreting the information provided through analysis and coming to a conclusion about evidential value. Sophisticated and complex instrumentation is often used as part of these analytical techniques and discussion of such instrumentation forms one of the main elements of this book. Table 1.1 gives some examples of common types of evidence that might be received in a forensic laboratory and analytical techniques appropriate for use in their examination.
Table 1.1 Selected evidence types and common sources for them. The focus here is on trace evidence.
Evidence types
Common sources
Fibres
Garments, furnishings
Hairs
Human hair (head, facial, etc.), animal hair
Paint
Cars, door and window frames, walls
Glass
Windows, car windscreens, drinking glasses, bottles
Documents
Notes, cheques, wills
Firearm discharge residue/explosives
Firearms, spent ammunition, improvised devices
Note the distinction between interpreting information obtained through analysis and coming to a conclusion about evidential value as a result. A good example of this is analysis of ethanol in blood, associated with driving under the influence of alcohol. Interpretation of data resulting from analysis provides a quantitative result giving the concentration of ethanol in blood but this information alone is not sufficient. A decision has then to be made as to whether this value is above or below the legal restriction when driving, taking into account the precision of the analytical method, resulting in a conclusion about the evidential value.
You might have noticed that we use the term āforensic scientistā in the previous paragraph. What defines a forensic scientist? In this book we are using it to refer to a scientist who works in an organisation whose primary business is forensic science and where the expectation is that analyses will result in evidence that may be presented in court. We recognise that there will be many more scientists where the results from their analyses may result in evidence presented in court but where the primary business of the organisation for which they work is not forensic science. An example of this would be an analytical chemist analysing blood or urine samples in a hospital to identify and quantify drugs for diagnostic and treatment purposes. From time to time, analysis may identify a sample that indicates that something illegal has taken place and this may result in legal proceedings. Such an analyst is far more likely to refer to themselves as an analytical chemist, or in this specific case as a toxicologist, rather than a forensic scientist (or, in this case, a forensic toxicologist). Thus, although the emphasis in this book is on the use of analytical techniques used in forensic science, we hope that analytical chemists working in other areas will find this text useful because, they too, should have a good understanding of the analytical techniques that they use.
Many of the chemical analytical techniques used in forensic science cannot be used āat sceneā, i.e. where the sample to be investigated originated. T...
Table of contents
Cover
Table of Contents
Analytical Techniques in Forensic Science
Copyright
List of Contributors
Preface
Acknowledgements
Part I: Preparing for Analysis
Part II: Spectroscopic and Spectrometric Techniques