Industrial Applications
eBook - ePub

Industrial Applications

Rajender S. Varma, Bubun Banerjee, Rajender S. Varma, Bubun Banerjee

Share book
  1. 177 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Industrial Applications

Rajender S. Varma, Bubun Banerjee, Rajender S. Varma, Bubun Banerjee

Book details
Book preview
Table of contents
Citations

About This Book

Magnetic nanocatalysts are garnering attention for development of greener catalytic processes due to their ease of recovery from a reaction medium. This book delves into a variety of magnetic nanocatalysts, their use in the industrial context, and recyclability. Topics covered include wastewater treatment, drug delivery, and industrial catalysis; another available volume focuses on the use of magnetic nanocatalysts in synthetic appliances and transformations.

Frequently asked questions

How do I cancel my subscription?
Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
Can/how do I download books?
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
What is the difference between the pricing plans?
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
What is Perlego?
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Do you support text-to-speech?
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Is Industrial Applications an online PDF/ePUB?
Yes, you can access Industrial Applications by Rajender S. Varma, Bubun Banerjee, Rajender S. Varma, Bubun Banerjee in PDF and/or ePUB format, as well as other popular books in Physical Sciences & Chemistry. We have over one million books available in our catalogue for you to explore.

Information

Publisher
De Gruyter
Year
2022
ISBN
9783110782240
Edition
1

Chapter 1 Nanoscale zerovalent iron (nZVI): an efficient heterogeneous catalyst for environment remediation

Sandeep Kumar *
Ravinderdeep Singh Brar
Department of Chemistry, Akal University, Bathinda, India
J. Nagendra Babu
Department of Chemistry, School of Basic and Applied Science, Central University of Punjab, Bathinda, India
Khadim Hussain
Department of Chemistry, School of Basic and Applied Science, Central University of Punjab, Bathinda, India

1.1 Introduction

Since the beginning of the Iron Age, the discovery of iron has proved a boon to the human race through the role it played in the evolution of various civilizations [1]. The twentieth century has witnessed the enormous applications of steel, an alloy of iron, as the hardest material used for the development of large infrastructures. Similarly, iron-based salts like FeSO4 and FeCl3 are being used in primary treatment like coagulation and flocculation of wastewater [2]. Iron is characterized by unique redox properties which could be exploited under ambient atmospheric conditions [3]. At the same time, the emergence of nanotechnology explored the various prospects of nanoscaled iron particles and rendered the nanoscale zerovalent iron (nZVI) the most effective properties such as high reactivity, better mobility than microscale zerovalent iron (mZVI) particles, intrinsic magnetic interactions, good adsorption capacities, low toxicity, and cost to act as a versatile engineered nanomaterial for environmental remediation [4]. The high reactivity of nZVI is attributed to inherent strong reducing tendencies of Fe(0) and is proficiently exploited for its reaction with a number of inorganic and organic substrates such as heavy metal ions, dyes, drugs, halogenated hydrocarbons, and reduction of organic compounds [5]. In recent years, nZVI has been progressively utilized in groundwater remediation and hazardous waste treatment. However, the applications of bare nZVI in catalytic processes are retarded by the surface passivation of nZVI on contact with air/moisture and/or by aggregation of nZVI [6]. The use of immobilizers as support and to act as stabilizing agents increases the catalytic efficiencies of nZVI [7, 8]. Thus, this chapter focuses on the mechanism and applications of nZVI in development of efficient nanocomposite materials as heterogeneous catalysts to perform the Fenton process for the environmental remediation of wastewaters containing complex organic materials.

1.2 Synthesis of nZVI

The reactivity and applicability of nZVI as an efficient environment remediating agent depends on its size, capping material, surface oxide layer, support material, and so on. Therefore, the process employed for manufacturing of nZVI plays a significant role in deciding the efficiency of the nanocatalyst formed [1]. Literature supports the higher reactivity of bare nZVI (10–103 times) than granular ZVI, owing to its high surface energy and magnetic properties [9]. A thin layer of oxide is formed on its surface when in contact with air and moisture. A mixed Fe(0)/Fe(II)/Fe(III) phase appeared on the surface when nZVI came in contact with water with major phase as lepidocrocite, that is, FeOOH [10, 11]. Core–shell particles, with protective oxide layer of appropriate thickness not prohibiting the transfer of electrons from the iron core, are more stable than the bare pyrophoric iron nanoparticles (FeNPs) and thus are found advantageous in practical applicability [1]. Prevention of agglomeration by using support or dispersing agents, capping of nZVI, and improving colloidal properties by using organic polymers may also result in enhanced efficiencies of nZVI [12]. Two general approaches are used for the synthesis of nZVI: top-down approach, that is, reducing the size of bulk iron to nanoscale; or bottom-up approach, that is, building nanoiron from atoms formed from ions or molecules [13].

1.2.1 Top-down synthesis

In top-down approach, large-sized iron materials are converted to nZVI using mechanical or chemical processes such as milling [14], etching [15], pulsed laser ablation [16], and noble gas sputtering [17]. Milling is the most commonly employed process in which millimeter-sized iron fillings are milled to nanosized iron using vibrating mills and stirred ball mills. Being economical, this method is used for industrial-scale production of nZVI, as it does not require the use of expensive harmful chemicals. Capping agents are added as a grinding medium to prevent highly reactive pyrophoric iron particles from undergoing combustion and result in reduced reactivity of nanoparticles (NPs).

1.2.2 Bottom-up synthesis

Bottom-up approaches are based on the “growth” of nZVI atom by atom starting from dissolved iron salts via chemical synthesis or self-assembly process.

1.2.2.1 Solution synthesis

The most commonly used process for nZVI synthesis involved the reduction and precipitation of ZVI under inert atmosphere from aqueous iron salts, usually chlorides or sulfates, using sodium borohydride as the reducing agent [18] as follows:
(1.1)...

Table of contents