Industrial Applications
eBook - ePub

Industrial Applications

Rajender S. Varma, Bubun Banerjee, Rajender S. Varma, Bubun Banerjee

Partager le livre
  1. 177 pages
  2. English
  3. ePUB (adapté aux mobiles)
  4. Disponible sur iOS et Android
eBook - ePub

Industrial Applications

Rajender S. Varma, Bubun Banerjee, Rajender S. Varma, Bubun Banerjee

DĂ©tails du livre
Aperçu du livre
Table des matiĂšres
Citations

À propos de ce livre

Magnetic nanocatalysts are garnering attention for development of greener catalytic processes due to their ease of recovery from a reaction medium. This book delves into a variety of magnetic nanocatalysts, their use in the industrial context, and recyclability. Topics covered include wastewater treatment, drug delivery, and industrial catalysis; another available volume focuses on the use of magnetic nanocatalysts in synthetic appliances and transformations.

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans paramĂštres et de cliquer sur « RĂ©silier l’abonnement ». C’est aussi simple que cela ! Une fois que vous aurez rĂ©siliĂ© votre abonnement, il restera actif pour le reste de la pĂ©riode pour laquelle vous avez payĂ©. DĂ©couvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptĂ©s aux mobiles peuvent ĂȘtre tĂ©lĂ©chargĂ©s via l’application. La plupart de nos PDF sont Ă©galement disponibles en tĂ©lĂ©chargement et les autres seront tĂ©lĂ©chargeables trĂšs prochainement. DĂ©couvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accĂšs complet Ă  la bibliothĂšque et Ă  toutes les fonctionnalitĂ©s de Perlego. Les seules diffĂ©rences sont les tarifs ainsi que la pĂ©riode d’abonnement : avec l’abonnement annuel, vous Ă©conomiserez environ 30 % par rapport Ă  12 mois d’abonnement mensuel.
Qu’est-ce que Perlego ?
Nous sommes un service d’abonnement Ă  des ouvrages universitaires en ligne, oĂč vous pouvez accĂ©der Ă  toute une bibliothĂšque pour un prix infĂ©rieur Ă  celui d’un seul livre par mois. Avec plus d’un million de livres sur plus de 1 000 sujets, nous avons ce qu’il vous faut ! DĂ©couvrez-en plus ici.
Prenez-vous en charge la synthÚse vocale ?
Recherchez le symbole Écouter sur votre prochain livre pour voir si vous pouvez l’écouter. L’outil Écouter lit le texte Ă  haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l’accĂ©lĂ©rer ou le ralentir. DĂ©couvrez-en plus ici.
Est-ce que Industrial Applications est un PDF/ePUB en ligne ?
Oui, vous pouvez accĂ©der Ă  Industrial Applications par Rajender S. Varma, Bubun Banerjee, Rajender S. Varma, Bubun Banerjee en format PDF et/ou ePUB ainsi qu’à d’autres livres populaires dans Sciences physiques et Chimie. Nous disposons de plus d’un million d’ouvrages Ă  dĂ©couvrir dans notre catalogue.

Informations

Éditeur
De Gruyter
Année
2022
ISBN
9783110782240
Édition
1
Sous-sujet
Chimie

Chapter 1 Nanoscale zerovalent iron (nZVI): an efficient heterogeneous catalyst for environment remediation

Sandeep Kumar *
Ravinderdeep Singh Brar
Department of Chemistry, Akal University, Bathinda, India
J. Nagendra Babu
Department of Chemistry, School of Basic and Applied Science, Central University of Punjab, Bathinda, India
Khadim Hussain
Department of Chemistry, School of Basic and Applied Science, Central University of Punjab, Bathinda, India

1.1 Introduction

Since the beginning of the Iron Age, the discovery of iron has proved a boon to the human race through the role it played in the evolution of various civilizations [1]. The twentieth century has witnessed the enormous applications of steel, an alloy of iron, as the hardest material used for the development of large infrastructures. Similarly, iron-based salts like FeSO4 and FeCl3 are being used in primary treatment like coagulation and flocculation of wastewater [2]. Iron is characterized by unique redox properties which could be exploited under ambient atmospheric conditions [3]. At the same time, the emergence of nanotechnology explored the various prospects of nanoscaled iron particles and rendered the nanoscale zerovalent iron (nZVI) the most effective properties such as high reactivity, better mobility than microscale zerovalent iron (mZVI) particles, intrinsic magnetic interactions, good adsorption capacities, low toxicity, and cost to act as a versatile engineered nanomaterial for environmental remediation [4]. The high reactivity of nZVI is attributed to inherent strong reducing tendencies of Fe(0) and is proficiently exploited for its reaction with a number of inorganic and organic substrates such as heavy metal ions, dyes, drugs, halogenated hydrocarbons, and reduction of organic compounds [5]. In recent years, nZVI has been progressively utilized in groundwater remediation and hazardous waste treatment. However, the applications of bare nZVI in catalytic processes are retarded by the surface passivation of nZVI on contact with air/moisture and/or by aggregation of nZVI [6]. The use of immobilizers as support and to act as stabilizing agents increases the catalytic efficiencies of nZVI [7, 8]. Thus, this chapter focuses on the mechanism and applications of nZVI in development of efficient nanocomposite materials as heterogeneous catalysts to perform the Fenton process for the environmental remediation of wastewaters containing complex organic materials.

1.2 Synthesis of nZVI

The reactivity and applicability of nZVI as an efficient environment remediating agent depends on its size, capping material, surface oxide layer, support material, and so on. Therefore, the process employed for manufacturing of nZVI plays a significant role in deciding the efficiency of the nanocatalyst formed [1]. Literature supports the higher reactivity of bare nZVI (10–103 times) than granular ZVI, owing to its high surface energy and magnetic properties [9]. A thin layer of oxide is formed on its surface when in contact with air and moisture. A mixed Fe(0)/Fe(II)/Fe(III) phase appeared on the surface when nZVI came in contact with water with major phase as lepidocrocite, that is, FeOOH [10, 11]. Core–shell particles, with protective oxide layer of appropriate thickness not prohibiting the transfer of electrons from the iron core, are more stable than the bare pyrophoric iron nanoparticles (FeNPs) and thus are found advantageous in practical applicability [1]. Prevention of agglomeration by using support or dispersing agents, capping of nZVI, and improving colloidal properties by using organic polymers may also result in enhanced efficiencies of nZVI [12]. Two general approaches are used for the synthesis of nZVI: top-down approach, that is, reducing the size of bulk iron to nanoscale; or bottom-up approach, that is, building nanoiron from atoms formed from ions or molecules [13].

1.2.1 Top-down synthesis

In top-down approach, large-sized iron materials are converted to nZVI using mechanical or chemical processes such as milling [14], etching [15], pulsed laser ablation [16], and noble gas sputtering [17]. Milling is the most commonly employed process in which millimeter-sized iron fillings are milled to nanosized iron using vibrating mills and stirred ball mills. Being economical, this method is used for industrial-scale production of nZVI, as it does not require the use of expensive harmful chemicals. Capping agents are added as a grinding medium to prevent highly reactive pyrophoric iron particles from undergoing combustion and result in reduced reactivity of nanoparticles (NPs).

1.2.2 Bottom-up synthesis

Bottom-up approaches are based on the “growth” of nZVI atom by atom starting from dissolved iron salts via chemical synthesis or self-assembly process.

1.2.2.1 Solution synthesis

The most commonly used process for nZVI synthesis involved the reduction and precipitation of ZVI under inert atmosphere from aqueous iron salts, usually chlorides or sulfates, using sodium borohydride as the reducing agent [18] as follows:
(1.1)...

Table des matiĂšres