
- 796 pages
- English
- PDF
- Available on iOS & Android
Lecture Notes On Electron Correlation And Magnetism
About this book
This volume attempts to fill the gap between standard introductions to solid state physics, and textbooks which give a sophisticated treatment of strongly correlated systems. Starting with the basics of the microscopic theory of magnetism, one proceeds with relatively elementary arguments to such topics of current interest as the Mott transition, heavy fermions, and quantum magnetism. The basic approach is that magnetism is one of the manifestations of electron-electron interaction, and its treatment should be part of a general discussion of electron correlation effects.Though the text is primarily theoretical, a large number of illustrative examples are brought from the experimental literature. There are many problems, with detailed solutions.The book is based on the material of lectures given at the Diploma Course of the International Center for Theoretical Physics, Trieste, and later at the Technical University and the R. Eötvös University of Budapest, Hungary.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Contents
- Preface
- 1 Introduction
- 2 Atoms, Ions, and Molecules
- 3 Crystal Field Theory
- 4 Mott Transition and Hubbard Model
- 5 Mott Insulators
- 6 Heisenberg Magnets
- 7 Itinerant Electron Magnetism
- 8 Ferromagnetism in Hubbard Models
- 9 The Gutzwiller Variational Method
- 10 The Correlated Metallic State
- 11 Mixed Valence and Heavy Fermions
- 12 Quantum Hall Effect
- A Hydrogen Atom
- B Single-Spin-Flip Ansatz
- C Gutzwiller Approximation
- D Schrieffer–Wolff Transformation
- Bibliography
- Index