Microbial Functional Foods and Nutraceuticals
  1. English
  2. ePUB (mobile friendly)
  3. Available on iOS & Android
eBook - ePub

About this book

Showcases the recent advances in microbial functional food applications across food science, microbiology, biotechnology, and chemical engineering

Microbial technology plays a key role in the improvement of biotechnology, cosmeceuticals, and biopharmaceutical applications. It has turned into a subject of expanding significance because new microbes and their related biomolecules are distinguished for their biological activity and health benefits. Encompassing both biotechnology and chemical engineering, Microbial Functional Foods and Nutraceuticals brings together microbiology, bacteria, and food processing/mechanization, which have applications for a variety of audiences. Pharmaceuticals, diagnostics, and medical device development all employ microbial food technology.

The book addresses the recent advances in microbial functional foods and associated applications, providing an important reference work for graduates and researchers. It also provides up-to-date information on novel nutraceutical compounds and their mechanisms of action—catering to the needs of researchers and academics in food science and technology, microbiology, chemical engineering, and other disciplines who are dealing with microbial functional foods and related areas.

Microbial Functional Foods and Nutraceuticals is:

  • Ground-breaking: Includes the latest developments and research in the area of microbial functional foods and nutraceuticals
  • Multidisciplinary: Applicable across food science and technology, microbiology, biotechnology, chemical engineering, and other important research fields
  • Practical and academic: An important area of both academic research and new product development in the food and pharmaceutical industries

Microbial Functional Foods and Nutraceuticals is an ideal resource of information for biologists, microbiologists, bioengineers, biochemists, biotechnologists, food technologists, enzymologists, and nutritionists. 

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Microbial Functional Foods and Nutraceuticals by Vijai Kumar Gupta, Helen Treichel, Volha (Olga) Shapaval, Luiz Antonio de Oliveira, Maria G. Tuohy, Vijai Kumar Gupta,Helen Treichel,Volha (Olga) Shapaval,Luiz Antonio de Oliveira,Maria G. Tuohy in PDF and/or ePUB format, as well as other popular books in Technology & Engineering & Food Science. We have over one million books available in our catalogue for you to explore.

Information

1
Microalgae as a Sustainable Source of Nutraceuticals

Md Nazmul Islam, Faisal Alsenani, and Peer M. Schenk*
Algae Biotechnology Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
*Corresponding author e‐mail: [email protected]

Introduction

Nutraceutical is a broad term which describes any food product with increased health benefits and which exceeds the usual health benefits of normal foods (Borowitzka 2013). Many bioactive constituents of food have been commercialized in the form of pharmaceutical products (pills, capsules, solutions, gels, liquors, powders, granules, etc.) which contribute to enhanced human health. However, these products cannot be categorized solely as “food” or “pharmaceutical” and a new hybrid term between nutrients and pharmaceuticals, “nutraceuticals,” has been introduced (Palthur et al. 2010).
A generally accepted term for nutraceuticals is “food supplements.” Another closely related term is “functional foods,” defined as “products derived from natural sources which can also be fortified, whose consumption is likely to benefit human health” (Burja et al. 2008). However, it is a widely held view that there appears to be a boundary between nutraceuticals and functional foods. For example, when a bioactive compound is added in a food formulation, i.e., 200 mg of carotenoids dissolved in 1 L of juice, this may result in a new potential functional food, whereas the same amount of carotenoids encapsulated in a tablet or capsule is considered a nutraceutical (Espin et al. 2007). Additionally, nutraceuticals can either be whole food products (e.g., Spirulina in tablet form) or dietary supplements where the nutraceutical compound(s) may be concentrated to provide the claimed health benefits (e.g., astaxanthin extracted from Haematococcus microalgae is available in the market).
Therefore, the emphasis on searching for nutraceuticals that contribute to improved human health has increased worldwide. Microalgae have become a popular target in the research community and biotechnology industry based on findings that many microalgal strains are very good sources of various nutraceuticals, such as vitamins, carotenoids, polyunsaturated fatty acids (PUFAs), phytosterols, etc. (Hudek et al. 2014). Moreover, the use of microalgal biomass has attracted attention because they grow fast regardless of the land’s suitability for farming. In principle, microalgae cultivation can be carried out independent of freshwater supply and does not compete with arable land or biodiverse landscapes. In fact, many microalgae with health benefits are marine or brackish water algae (Lim et al. 2012). Microalgae are therefore considered an ideal source for the sustainable production of physiologically active compounds (Abdelaziz et al. 2013; Hudek et al. 2014). Many of them have a surprising capability of enduring adverse environmental conditions by means of their secondary metabolites, and some of these conditions lead to high accumulation of these compounds (e.g., Dunaliella salina produces high levels of β‐carotene under highly saline conditions; Borowitzka 2013).
Prior studies have noted the health benefits of algal nutraceuticals which include improved immunity, neurological development, increased health of different organs including bones, teeth, intestine, etc. Algal nutraceuticals were also found to be effective in fighting obesity and cholesterol, and decrease blood pressure and maintain optimum heart condition. Several studies also documented some antiviral and anticancer properties (Venugopal 2008). In this chapter, we will provide a brief overview of the different nutraceutical compounds currently reported to be available in microalgae.

Microalgae‐Derived Nutraceuticals

Pigments

Stengel and his team (2011) pointed out a few of the major categories of microalgal pigments which are closed tetrapyrroles such as chlorophylls a and b (chlorins), porphyrins (chlorophyll c), open chain tetrapyrroles (phycobilin pigments), and carotenoids (polyisoprenoids; carotenes and xanthophylls). Among them, the most targeted pigment groups are carotenoids and phycobilins which are already widely used by industry (Stengel et al. 2011).
Generally, carotenoids are powerful antioxidants and provide photoprotection to cells. Most of them have a 40‐carbon polyene chain as their molecular backbone (del Campo et al. 2007; Guedes et al. 2011a). A recent study by our group showed that when induced by external stimuli, various microalgae can produce significant amounts of carotenoids. Among a few hundred Australian microalgal strains, 12 rapidly growing strains were screened for carotenoid profiles and D. salina, Tetraselmis suecica, Isochrysis galbana, and Pavlova salina were found to be good sources of various carotenoids at 4.68–6.88 mg/g dry weight (DW) even without external stimuli (Ahmed et al. 2014).
A considerable amount of work has been done worldwide to screen microalgae for carotenoid production. For example, lutein is dominant in Muriellopsis sp., Scenedesmus almeriensis, and Chlorella sp. (Blanco et al. 2007; Borowitzka 2013; del Campo et al. 2001; Fernandez‐Sevilla et al. 2010); astaxanthin, canthaxanthin and lutein are abundant in Chlorella zofingiensis; canthaxanthin in Scenedesmus komareckii; aplanospores in D. salina; echinenone in Botryococcus braunii; and fucoxanthin in Phaeodactylum tricornutum (Table 1.1). However, apart from β‐carotene and astaxanthin, large‐scale ...

Table of contents

  1. Cover
  2. Title Page
  3. Table of Contents
  4. List of Contributors
  5. 1 Microalgae as a Sustainable Source of Nutraceuticals
  6. 2 Functional Foods from Cyanobacteria: An Emerging Source for Functional Food Products of Pharmaceutical Importance
  7. 3 Seaweed Carotenoid, Fucoxanthin, as Functional Food
  8. 4 Functional Foods from Mushroom
  9. 5 Microbial Production of Organic Acids
  10. 6 Microbes as a Source for the Production of Food Ingredients
  11. 7 Microbial Xanthan, Levan, Gellan, and Curdlan as Food Additives
  12. 8 Microbial Fibrinolytic Enzyme Production and Applications
  13. 9 Microbial Products Maintain Female Homeostasis
  14. 10 Production of High‐Quality Probiotics by Fermentation
  15. 11 Probiotics and Their Health Benefits
  16. 12 Nutritional Potential of Auricularia auricula‐judae and Termitomyces umkowaan – The Wild Edible Mushrooms of South‐Western India
  17. Index
  18. End User License Agreement