MRI at a Glance
eBook - ePub

MRI at a Glance

Catherine Westbrook

Share book
  1. English
  2. ePUB (mobile friendly)
  3. Available on iOS & Android
eBook - ePub

MRI at a Glance

Catherine Westbrook

Book details
Book preview
Table of contents
Citations

About This Book

Highly Commended at the British Medical Association Book Awards 2016 MRI at a Glance encapsulates essential MRI physics knowledge. Illustrated in full colour throughout, its concise text explains complex information, to provide the perfect revision aid. It includes topics ranging from magnetism to safety, K space to pulse sequences, and image contrast to artefacts.
This third edition has been fully updated, with revised diagrams and new pedagogy, including 55 key points, tables, scan tips, equations, and learning points. There is also an expanded glossary and new appendices on optimizing image quality, parameters and trade-offs. A companion website is also available at www.ataglanceseries.com/mri featuring animations, interactive multiple choice questions, and scan tips to improve your own MRI technique.

MRI at a Glance is ideal for student radiographers and MRI technologists, especially those undertaking the American Registry of Radiation Technologist (ARRT) MRI examination, as well as other health professionals involved in MRI.

Frequently asked questions

How do I cancel my subscription?
Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
Can/how do I download books?
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
What is the difference between the pricing plans?
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
What is Perlego?
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Do you support text-to-speech?
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Is MRI at a Glance an online PDF/ePUB?
Yes, you can access MRI at a Glance by Catherine Westbrook in PDF and/or ePUB format, as well as other popular books in Medicine & Medical Technology & Supplies. We have over one million books available in our catalogue for you to explore.

Information

Year
2015
ISBN
9781119053538

Magnetism and electromagnetism

Diagram represents how the magnetic field lines in a homogenous magnetic field converge to a point when a paramagnetic substance is kept in its path.
Figure 1.1 Paramagnetic properties.
Diagram represents how the magnetic field lines in a homogenous magnetic field diverge from a point when a diamagnetic substance is kept in its path.
Figure 1.2 Diamagnetic properties.
Diagram represents how the magnetic field lines in a homogenous magnetic field overlaps when a ferromagnetic substance is kept in its path.
Figure 1.3 Ferromagnetic properties.
Image described by surrounding text.
Figure 1.4 The right-hand thumb rule.
Diagram shows the magnetic field B sub(0), applied rightward, across the coils of an electromagnet.
Figure 1.5 A simple electromagnet.

Magnetic susceptibility

The magnetic susceptibility of a substance is the ability of external magnetic fields to affect the nuclei of a particular atom, and is related to the electron configurations of that atom. The nucleus of an atom, which is surrounded by paired electrons, is more protected from, and unaffected by, the external magnetic field than the nucleus of an atom with unpaired electrons. There are three types of magnetic susceptibility: paramagnetism, diamagnetism and ferromagnetism.

Paramagnetism

Paramagnetic substances contain unpaired electrons within the atom that induce a small magnetic field about themselves known as the magnetic moment. With no external magnetic field, these magnetic moments occur in a random pattern and cancel each other out. In the presence of an external magnetic field, paramagnetic substances align with the direction of the field and so the magnetic moments add together. Paramagnetic substances affect external magnetic fields in a positive way, resulting in a local increase in the magnetic field (Figure 1.1). An example of a paramagnetic substance is oxygen.

Super-paramagnetism

Super-paramagnetic substances have a positive susceptibility that is greater than that exhibited by paramagnetic substances, but less than that of ferromagnetic materials. Examples of a super-paramagnetic substance are iron oxide contrast agents.

Diamagnetism

With no external magnetic field present, diamagnetic substances show no net magnetic moment, as the electron currents caused by their motions add to zero. When an external magnetic field is applied, diamagnetic substances show a small magnetic moment that opposes the applied field. Substances of this type are therefore slightly repelled by the magnetic field and have negative magnetic susceptibilities (Figure 1.2). Examples of diamagnetic substances include water and inert gasses.

Ferromagnetism

When a ferromagnetic substance comes into contact with a magnetic field, the results are strong attraction and alignment. They retain their magnetization even when the external magnetic field has been removed. Ferromagnetic substances remain magnetic, are permanently magnetized and subsequently become permanent magnets. An example of a ferromagnetic substance is iron.
Magnets are bipolar as they have two poles, north and south. The magnetic field exerted by them produces magnetic field lines or lines of force running from the magnetic south to the north poles of the magnet (Figure 1.3). They are called magnetic lines of flux. The number of lines per unit area is called the magnetic flux density. The strength of the magnetic field, expressed by the notation (B) – or, in the case of more than one field, the primary field (B0) and the secondary field (B1) – is measured in one of three units: gauss (G), kilogauss (kG) and tesla (T). If two magnets are brought close together, there are forces of attraction and repulsion between them depending on the orientation of their poles relative to each other. Like poles repel and opposite poles attract.

Electromagnetism

A magnetic field is generated by a moving charge (electrical current...

Table of contents