Data Analysis in High Energy Physics
eBook - ePub

Data Analysis in High Energy Physics

A Practical Guide to Statistical Methods

  1. English
  2. ePUB (mobile friendly)
  3. Available on iOS & Android
eBook - ePub

Data Analysis in High Energy Physics

A Practical Guide to Statistical Methods

About this book

This practical guide covers the essential tasks in statistical data analysis encountered in high energy physics and provides comprehensive advice for typical questions and problems. The basic methods for inferring results from data are presented as well as tools for advanced tasks such as improving the signal-to-background ratio, correcting detector effects, determining systematics and many others. Concrete applications are discussed in analysis walkthroughs. Each chapter is supplemented by numerous examples and exercises and by a list of literature and relevant links. The book targets a broad readership at all career levels - from students to senior researchers. An accompanying website provides more algorithms as well as up-to-date information and links.

* Free solutions manual available for lecturers at www.wiley-vch.de/supplements/

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Data Analysis in High Energy Physics by Olaf Behnke,Kevin Kröninger,Grégory Schott,Thomas Schörner-Sadenius in PDF and/or ePUB format, as well as other popular books in Physical Sciences & Nuclear Physics. We have over one million books available in our catalogue for you to explore.

Information

Publisher
Wiley-VCH
Year
2013
Print ISBN
9783527410583
eBook ISBN
9783527653430

1

Fundamental Concepts

Roger Barlow

1.1 Introduction

Particle physics is all about random behaviour. When two particles collide, or even when a single particle decays, we can’t predict with certainty what will happen, we can only give probabilities of the various different outcomes. Although we measure the lifetimes of unstable particles and quote them to high precision – for the τ lepton, for example, it is 0.290±0.001 ps – we cannot say exactly when a particular τ will decay: it may well be shorter or longer. Although we know the probabilities (called, in this context, branching ratios) for the different decay channels, we can’t predict how any particular τ will decay – to an electron, or a muon, or various hadrons.
Then, when particles travel through a detector system they excite electrons in random ways, in the gas molecules of a drift chamber or the valence band of semiconducting silicon, and these electrons will be collected and amplified in further random processes. Photons and phototubes are random at the most basic quantum level. The experiments with which we study the properties of the basic particles are random through and through, and a thorough knowledge of that fundamental randomness is essential for machine builders, for analysts, and for the understanding of the results they give.
It was not always like this. Classical physics was deterministic and predictable. Laplace could suggest a hypothetical demon who, aware of all the coordinates and velocities of all the particles in the Universe, could then predict all future events. But in today’s physics the demon is handicapped not only by the uncertainties of quantum mechanics – the impossibility of knowing both coordinates and velocities – but also by the greater understanding we now have of chaotic systems. For predicting the flight of cannonballs or the trajectories of comets it was assumed, as a matter of common sense, that although our imperfect information about the initial conditions gave rise to increasing inaccuracy in the predicted motion, better information would give rise to more accurate predictions, and that this process could continue without limit, getting as close as one needed (and could afford) to perfect prediction. We now know that this is not true even for some quite simple systems, such as the compound pendulum.
That is only one of the two ways that probability comes into our experiments. When a muon passes through a When a muon passes through a detector it may, with some probability, produce a signal in a drift chamber: the corresponding calculation is a prediction. Conversely a drift chamber signal may, with some probability, have been produced by a muon, or by some other particle, or just by random noise. To interpret such a signal is a process called inference. Prediction works forwards in time and inference works backwards. We use the same mathematical tool – probability – to cover both processes, and this causes occasional confusion. But the statistical processes of inference are, though less visibly dramatic, of vital concern for the analysis of experiments. Which is what this book is about.

1.2 Probability Density Functions

The outcomes of random processes may be described by a variable (or variables) which can be discrete or continuous, and a discrete variable can be quantitative or qualitative. For example, when a τ lepton decays it can produce a muon, an electron, or hadrons: that’s a qualitative difference. It may produce one, three or five charged particles: that’s quantitative and discrete. The visible energy (i.e. not counting neutrinos) may be between 0 and 1777 MeV: that’s quantitative and continuous.
The probability prediction for a variable x is given by a function: we can call it f(x). If x is discrete then f(x) is itself a probability. If x is continuous then f(x) has the dimensions of the inverse of x: it is ∫ f(x)dx that is the dimensionless probability, and f(x) is called a probability density function or pdf.1) There are clearly an infinite number of different pdfs and it is often convenient to summarise the properties of a particular pdf in a few numbers.

1.2.1 Expectation Values

If the variable x is quantitative then for any functiSpon g(x) one can form the average
(1.1)
images
where the integral (for continuous x) or the sum (for discrete x) covers the whole range of possible values. This is called the expectation value. It is also sometimes written
images
g
images
, as in quantum mechanics. It gives the mean, or average, value of g, which is not necessarily the most likely one – particularly if x is discrete.

1.2.2 Moments

For any pdf f(x), the integer powers of x have expectation values. These are called the (algebraic) moments and are defined as
(1.2)
images
The first moment, α1, is called the mean or, more properly, arithmetic mean of the distribution; it is usually called µ and often written
images
. It acts as a key measure of location, in cases where the variable x is distributed with some known shape about a particular point.
Conversely there are cases where the shape is what matters, and the absolute location of the distribution is of little interest. For these it is useful to use the central moments
(1.3)
images

1.2.2.1 Variance

The second central moment is also known as the variance, and its square root as the standard deviation:
(1.4)
images
The variance is a measure of the width of a distribution. It is often easier to deal with algebraically whereas the standard deviation σ has the same dimensions as the variable x; which to use is a matter of personal choice. Broadly speaking, statisticians tend to use the variance whereas physicists tend to use the standard deviation.

1.2.2.2 Skew and Kurtosis

The third and fourth central moments are used to build shape-describing quantities known as skew and kurtosis (or curtosis):
(1.5)
images
(1.6)
images
Division by the appropriate power of σ makes these quantities dimensionless and thus independent of the scale of the distribution, as well as of its location. Any symmetric distribution has zero skew: distributions with positive skew have a tail towards higher values, and conversely negative skew distributions have a tail towards lower values. The Poisson distribution has a positive skew, the energy recorded by a calorimeter has a negative skew. A Gaussian has a kurtosis of zero – by definition, that’s why there is a ‘3’ in the formula. Distributions with positive kurtosis (which are called leptokurtic) have a wider tail than the equivalent Gaussian, more centralised or platykurtic distributions have negative kurtosis. The Breit–Wigner distribution is leptokurtic, as is Students t. The uniform distribution is platykurtic.

1.2.2.3 Covariance and Correlation

Suppose you have a pdf f(x, y) which is a function of two random variables, x and y. You can not only form moments for both x and y, but also for combinations, particularly the covariance
(1.7)
images
If the joint pdf is factorisable: f(x, y) = fx(x) · fy(y), then x and y are independent, and the covariance is zero (although the converse is not necessarily true: a zero covariance is a necessary but not a sufficient condition for two variables to be independent).
A dimensionless version of the covariance is the correlation ρ:
(1.8)
images
The magnitude of the correlation lies between 0 (uncor...

Table of contents

  1. Cover
  2. Contents
  3. Title Page
  4. The Editors
  5. Copyright
  6. Preface
  7. List of Contributors
  8. 1 Fundamental Concepts
  9. 2 Parameter Estimation
  10. 3 Hypothesis Testing
  11. 4 Interval Estimation
  12. 5 Classification
  13. 6 Unfolding
  14. 7 Constrained Fits
  15. 8 How to Deal with Systematic Uncertainties
  16. 9 Theory Uncertainties
  17. 10 Statistical Methods Commonly Used in High Energy Physics
  18. 11 Analysis Walk-Throughs
  19. 12 Applications in Astronomy
  20. References
  21. The Authors
  22. Index