Laser Velocimetry in Fluid Mechanics
eBook - ePub

Laser Velocimetry in Fluid Mechanics

Alain Boutier, Alain Boutier

Buch teilen
  1. English
  2. ePUB (handyfreundlich)
  3. Über iOS und Android verfügbar
eBook - ePub

Laser Velocimetry in Fluid Mechanics

Alain Boutier, Alain Boutier

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

In fluid mechanics, velocity measurement is fundamental in order to improve the behavior knowledge of the flow. Velocity maps help us to understand the mean flow structure and its fluctuations, in order to further validate codes.
Laser velocimetry is an optical technique for velocity measurements; it is based on light scattering by tiny particles assumed to follow the flow, which allows the local fluid flow velocity and its fluctuations to be determined. It is a widely used non-intrusive technique to measure velocities in fluid flows, either locally or in a map.
This book presents the various techniques of laser velocimetry, as well as their specific qualities: local measurements or in plane maps, mean or instantaneous values, 3D measurements. Flow seeding with particles is described with currently used products, as well as the appropriate aerosol generators. Post-processing of data allows us to extract synthetic information from measurements and to perform comparisons with results issued from CFD codes. The principles and characteristics of the different available techniques, all based on the scattering of light by tiny particles embedded in the flow, are described in detail; showing how they deliver different information, either locally or in a map, mean values and turbulence characteristics.

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Laser Velocimetry in Fluid Mechanics als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Laser Velocimetry in Fluid Mechanics von Alain Boutier, Alain Boutier im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Physical Sciences & Mechanics. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Jahr
2013
ISBN
9781118569337

Chapter 1

Measurement Needs in Fluid Mechanics 1

Measurements provide useful information for the interpretation of physical phenomena and for code validation. Fluid mechanics is based on nonlinear Navier– Stokes equations, which are very difficult to solve directly; simplifying assumptions or numerical approximations are used in order to make calculation times reasonable. Sometimes empirical relations are established when theory is not available; in particular, turbulent regime analysis leads to the building of new theories that must be verified. All these processes require validation by experiments and accurate measurements.
The most famous names in physics are associated with knowledge evolution in fluid mechanics, from Newton to Euler, Navier and Stokes, and also Bernoulli, Lagrange, Leibniz and Cauchy.
Theoretical approaches consist of mathematical resolution of partial differential equations. When an analytical solution is not possible, numerical approaches are used, but must be verified by well–documented experiments. In fluid mechanics, more than elsewhere, the three approaches (theory, simulation, and experimentation) often cannot be separated.
Theoretical treatment is exact and universal, but requires good physical knowledge of the phenomena. Boundary conditions are often made ideal and solutions are not available for complex flow configurations.
Numerical simulation provides complete flow information, with conditions that can be easily modified. Nevertheless, the process is often very expensive to put into operation, is limited by the computer power, and as turbulence models are not universal, a certain ability is required for correct employment.
Experimental investigations make parametric studies possible, in order to recognize which parameters are influent; sometimes it is the only way to obtain information. Yet they may appear rather complicated and expensive to implement; not all the variables can be measured and the intrusive character of the measuring method must be minimized.

1.1. Navier–Stokes equations

General equations in fluid mechanics are based on mass and energy conservation, as well as on movement quantity equations. These equations, called Navier–Stokes equations, make use of spatial and temporal partial derivatives of velocity and temperature, at first and second order. Even if exact solutions exist for simple laminar flows, for real flows, which are turbulent and 3D, calculations become much too complex to be solved by current computers within acceptable timescales. Therefore, numerical solutions are not exact and generate errors that must be evaluated by experiments and appropriate measurements.
The continuity equation (mass conservation) is expressed by:
[1.1]
images
where ρ is the volume mass and
images
the velocity vector, with (u, v, w) coordinates in the frame (x, y, z) or (u1, u2, u3) in the frame (x1, x2, x3).
For an incompressible flow (ρ = constant), it becomes:
[1.2]
images
The movement quantity equation expresses the fact that the system movement quantity derivative is equal to the sum of the forces acting on the system. Using some assumptions, mainly that of Newtonian flow, this vector equation is written:
[1.3]
images
images
is the constraint tensor, which makes pressure P and dynamic viscosity µ appear.
images
represents the unity tensor.
In incompressible conditions, movement quantity equation along x is reduced to:
[1.4]
images
where v = µ/ρ is the kinematic v...

Inhaltsverzeichnis