Reliability, Maintainability and Risk
eBook - ePub

Reliability, Maintainability and Risk

Practical Methods for Engineers including Reliability Centred Maintenance and Safety-Related Systems

David J. Smith

Buch teilen
  1. 368 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Reliability, Maintainability and Risk

Practical Methods for Engineers including Reliability Centred Maintenance and Safety-Related Systems

David J. Smith

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

For over 30 years, Reliability, Maintainability and Risk has been recognised as a leading text for reliability and maintenance professionals. Now in its seventh edition, the book has been updated to remain the first choice for professional engineers and students. The seventh edition incorporates new material on important topics including software failure, the latest safety legislation and standards, product liability, integrity of safety-related systems, as well as delivering an up-to-date review of the latest approaches to reliability modelling, including cutsec ranking. It is also supported by new detailed case studies on reliability and risk in practice.*The leading reliability reference for over 30 years
*Covers all key aspects of reliability and maintenance management in an accessible way with minimal mathematics - ideal for hands-on applications
*Four new chapters covering software failure, safety legislation, safety systems and new case studies on reliability and risk in practice

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Reliability, Maintainability and Risk als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Reliability, Maintainability and Risk von David J. Smith im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Business & Operations. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Jahr
2005
ISBN
9780080458939
Auflage
7
Part One
Understanding Reliability Parameters and Costs
1

The history of reliability and safety technology

Publisher Summary

Because no human activity can enjoy zero risk, and no equipment can enjoy a zero rate of failure, there has grown a safety technology for optimizing risk. Although safety/Reliability engineering has not developed as a unified discipline, it has grown out of the integration of a number of activities which were previously the province of the engineer. The design of safety-related systems has evolved partly in response to the emergence of new technologies but largely as a result of lessons learnt from failures. The application of technology to hazardous areas requires the formal application of this feedback principle in order to maximize the rate of reliability improvement. Nevertheless, all engineered products will exhibit some degree of reliability growth, as mentioned above, even without formal improvement programs. Reliability engineering, beginning in the design phase, seeks to select the design compromise that balances the cost of failure reduction against the value of the enhancement.
Safety/Reliability engineering has not developed as a unified discipline, but has grown out of the integration of a number of activities which were previously the province of the engineer.
Since no human activity can enjoy zero risk, and no equipment a zero rate of failure, there has grown a safety technology for optimizing risk. This attempts to balance the risk against the benefits of the activities and the costs of further risk reduction.
Similarly, reliability engineering, beginning in the design phase, seeks to select the design compromise which balances the cost of failure reduction against the value of the enhancement.
The abbreviation RAMS is frequently used for ease of reference to reliability, availability, maintainability and safety-integrity.

1.1 FAILURE DATA

Throughout the history of engineering, reliability improvement (also called reliability growth) arising as a natural consequence of the analysis of failure has long been a central feature of development. This ‘test and correct’ principle had been practised long before the development of formal procedures for data collection and analysis because failure is usually self-evident and thus leads inevitably to design modifications.
The design of safety-related systems (for example, railway signalling) has evolved partly in response to the emergence of new technologies but largely as a result of lessons learnt from failures. The application of technology to hazardous areas requires the formal application of this feedback principle in order to maximize the rate of reliability improvement. Nevertheless, all engineered products will exhibit some degree of reliability growth, as mentioned above, even without formal improvement programmes.
Nineteenth- and early twentieth-century designs were less severely constrained by the cost and schedule pressures of today. Thus, in many cases, high levels of reliability were achieved as a result of over-design. The need for quantified reliability assessment techniques during design and development was not therefore identified. Therefore failure rates of engineered components were not required, as they are now, for use in prediction techniques and consequently there was little incentive for the formal collection of failure data.
Another factor is that, until well into this century, component parts were individually fabricated in a ‘craft’ environment. Mass production and the attendant need for component standardization did not apply and the concept of a valid repeatable component failure rate could not exist. The reliability of each product was, therefore, highly dependent on the craftsman/manufacturer and less determined by the ‘combination’ of part reliabilities.
Nevertheless, mass pro...

Inhaltsverzeichnis