Genética
eBook - ePub

Genética

La continuidad de la vida

Ana Barahona Echeverría, Daniel Piñero

Buch teilen
  1. 152 Seiten
  2. Spanish
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Genética

La continuidad de la vida

Ana Barahona Echeverría, Daniel Piñero

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

La genética estudia los mecanismos y patrones de la herencia, aquellas características que pasan de una generación a otra. ¿Por qué los hijos se parecen a sus padres?, ¿qué son los genes y qué sabemos de ellos?, ¿en qué medida son importantes los factores ambientales en la determinación de la apariencia de los organismos?, son algunas de las preguntas más generales a las que la genética responde.

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Genética als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Genética von Ana Barahona Echeverría, Daniel Piñero im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Ciencias biológicas & Genética y genómica. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

III. Mirando dentro del gen

LA MOLÉCULA DE LA HERENCIA

LOS organismos vivos están caracterizados desde el punto de vista funcional por su capacidad para automantenerse y autorreproducirse. Existen tres tipos de moléculas gigantes o macromoléculas que normalmente son sintetizadas sólo en los organismos vivos y que son básicas para llevar a cabo estas funciones. Cada una de estas macromoléculas consiste en una larga cadena compuesta de muchas unidades estructurales. Estas pequeñas unidades discretas o monómeros van uniéndose unas a otras hasta formar un dímero (dos unidades), un trímero (tres unidades), etc., hasta formar un polímero. Las tres clases de macromoléculas o polímeros son: polisacáridos, polipéptidos y polinucleótidos.
Los polisacáridos tienen monómeros o azúcares que contienen carbono (C), hidrógeno (H) y oxígeno (O) como la glucosa, fructuosa o galactosa. Los polipéptidos están formados de aminoácidos que contienen C, O, H, N (nitrógeno) y algunas veces azufre (S). Existen 20 diferentes clases de aminoácidos en los organismos. La unión entre dos aminoácidos se hace por medio de un enlace peptídico para producir un dipéptido. Una proteína está compuesta de una o varias cadenas de polipéptidos.
Por último, los polinucleótidos, también llamados ácidos nucleicos, pueden ser de dos clases: polirribonucleótidos o ácidos ribonucleicos (ARN) y los polidesoxirribonucleótidos o ácidos desoxirribonucleicos (ADN). Los monómeros que forman los ácidos nucleicos están constituidos por una base, un azúcar y un fosfato, cuyos componentes químicos son C, O, N, H y P (fósforo). Este tipo de macromoléculas, los ácidos nucleicos, contienen la información necesaria para la replicación de los seres vivos, por lo que son el material genético presente en todo tipo de organismos. Como ya mencionamos el material genético de algunos virus puede ser ARN o ADN, y el material genético de los organismos celulares es ADN.
Químicamente el ADN consiste de un par de cadenas que semejan los ejes de una escalera; cada cadena tiene un esqueleto de fosfatos y azúcares alternantes. Estos azúcares son de una sola clase, desoxirribosa (recordemos que será ribosa para el ARN), compuestos de C, H y O en donde cuatro de sus cinco átomos de C están formando un anillo con un átomo de O (Figura 12).
FIGURA 12. Desoxirribosa y ribosa.
A cada azúcar está ligada una base orgánica. Esta base está compuesta de C, H, O y N, y puede ser de cuatro tipos: adenina (A), timina (T) uracilo (U) para el ARN, citosina (C) o guanina (G). La citosina y la timina son pirimidinas, las cuales contienen dos N y cuatro C formando un anillo. La adenina y la guanina son purinas con cuatro N y cinco C arreglados en dos anillos (Figura 13).
FIGURA 13. Bases nitrogenadas: purinas y pirimidinas.
Cada base orgánica de cada cadena se une a la otra base de la otra cadena mediante un enlace o puente de hidrógeno: G y C se unen mediante tres enlaces de hidrógeno y A y T mediante dos (Figura 14).
FIGURA 14. Figura que muestra las cuatro bases, timina, adenina, citosina y guanina. El apareamiento de bases se da entre A y T y entre G y C, unidas por puentes de hidrógeno (líneas punteadas); dos puentes entre timina y adenina, y tres entre citosa y guanina.
Como ya hemos mencionado, el ADN es una doble hélice y sus características principales están determinadas por los azúcares que se orientan en una dirección en una cadena y en otra dirección en la otra cadena (Figura 15). Debido a este arreglo inverso de los azúcares en cada cadena el ADN gira una vuelta completa (es decir, 360 grados) cada 10 pares de bases (Figura 16).
Otra característica importante es que al esqueleto de azúcar-fosfato puede unirse cualquier base, púrica o pirimídica, teniéndose teóricamente, cualquier arreglo o secuencia de ellas. Pero, las bases de una cadena deben complementarse con las bases de la otra cadena; ya hemos mencionado que G sólo se une con C y A sólo lo hace con T. En otras palabras, A se complementa con T, y G se complementa con C, de tal suerte que si nosotros sabemos la secuencia de bases en una cadena podremos deducir la secuencia de la cadena opuesta. De esta forma, en una cadena doble de ADN el número de As es igual al número de Ts, y el número de Gs es igual al número de Cs. Por ejemplo, si sabemos que una secuencia de una determinada región de una cadena de ADN es ATTGC podremos deducir que la cadena opuesta tendrá la secuencia TAACG para esa misma región. Y es así como están constituidos los genes: trozos de ADN cuya secuencia es determinada y distinta de otros genes.
FIGURA 15. Molécula de ADN. Polímero doble de ADN, en donde una hebra aparece de cabeza en relación con la otra. Cada polímero está formado por nucleótidos unidos covalentemente a través del azúcar-fosfato; las dos hebras están unidas entre sí por puentes de hidrógeno entre las bases adyacentes.
FIGURA 16. Modelo de la doble hélice de ADN. Las medidas fueron determinadas mediante estudios de difracción de rayos X. Cada par de bases tiene 0.34 nm de espesor, y diez pares producen una vuelta completa de la hélice, con una longitud de 3.4 nm. El ancho total de la doble hélice, incluyendo el par de bases y el esqueleto de azúcar-fosfato es de 2.0 nm.
El descubrimiento de que el ADN es la molécula de la herencia es relativamente joven pues pertenece al siglo XX, y sin lugar a dudas ha sido uno de los hallazgos más sobresalientes de la biología.
¿Cuál es el material hereditario? Fueron muchos los experimentos diseñados y las hipótesis propuestas para contestar esta pregunta. Mencionaremos las aportaciones más importantes que marcaron el camino para dilucidar la estructura del ADN.
En 1928, el bacteriólogo Fred Griffith estaba interesado en la virulencia (capacidad de infectar y producir enfermedad) de las bacterias causantes de la neumonía, llamadas Pneumonococcus. Primero obtuvo dos cepas, una infecciosa y otra no infecciosa o inofensiva. La diferencia principal entre estas dos cepas era que la cepa virulenta o mortal sintetizaba una cubierta lisa de polisacárido que protegía a la bacteria de ser digerida por el hospedero (el organismo al cual infectan), mientras que la cepa inofensiva no podía sintetizar la capa protectora (y por eso era atacada por las defensas del hospedero, haciéndola efectivamente inofensiva); al ponerlas a crecer en una caja de Petri bajo cultivo, Griffith notó que la cepa virulenta formaba placas lisas, mientras que la inofensiva producía placas rugosas.
Como primer paso, Griffith inyectó a ratones normales estas dos cepas para ver qué sucedía. El resultado fue poco sorprendente. Los ratones inyectados con la cepa lisa o virulenta murieron, mientras que los que recibieron la cepa rugosa, sobrevivieron. El segundo paso fue aplicar calor a las bacterias de la cepa lisa o virulenta para matarlas (como sabemos, la mayoría de las bacterias mueren con el calor, de ahí que, por ejemplo, debamos hervir el agua antes de tomarla para garantizar la muerte de estos microorganismos), e inyectarlas posteriormente a los ratones. Los ratones no murieron. Recordemos que la diferencia entre las dos cepas es la presencia de una capa de polisacárido protectora. Fue así como Griffith demostró que el polisacárido por sí ...

Inhaltsverzeichnis