Biomolecular Thermodynamics
eBook - ePub

Biomolecular Thermodynamics

From Theory to Application

Douglas Barrick

Buch teilen
  1. 524 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Biomolecular Thermodynamics

From Theory to Application

Douglas Barrick

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

" an impressive text that addresses a glaring gap in the teaching of physical chemistry, being specifically focused on biologically-relevant systems along with a practical focus…. the ample problems and tutorials throughout are much appreciated."
–Tobin R. Sosnick, Professor and Chair of Biochemistry and Molecular Biology, University of Chicago

"Presents both the concepts and equations associated with statistical thermodynamics in a unique way that is at visual, intuitive, and rigorous. This approach will greatly benefit students at all levels."
–Vijay S. Pande, Henry Dreyfus Professor of Chemistry, Stanford University

" a masterful tour de force …. Barrick's rigor and scholarship come through in every chapter."
–Rohit V. Pappu, Edwin H. Murty Professor of Engineering, Washington University in St. Louis

This book provides a comprehensive, contemporary introduction to developing a quantitative understanding of how biological macromolecules behave using classical and statistical thermodynamics. The author focuses on practical skills needed to apply the underlying equations in real life examples. The text develops mechanistic models, showing how they connect to thermodynamic observables, presenting simulations of thermodynamic behavior, and analyzing experimental data. The reader is presented with plenty of exercises and problems to facilitate hands-on learning through mathematical simulation.

Douglas E. Barrick is a professor in the Department of Biophysics at Johns Hopkins University. He earned his Ph.D. in biochemistry from Stanford University, and a Ph.D. in biophysics and structural biology from the University of Oregon.

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Biomolecular Thermodynamics als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Biomolecular Thermodynamics von Douglas Barrick im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Medicine & Biochemistry in Medicine. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Verlag
CRC Press
Jahr
2017
ISBN
9781439800201
chapter 1
Probabilities and Statistics in Chemical and Biothermodynamics
Goals and Summary
The goals of this chapter are to familiarize students with the concepts of probabilities and statistics to understand physical chemical principles and to analyze complex problems in chemical and biothermodynamics. The first part of the chapter will focus on events, outcomes, and their combinations. We will develop the concept of the probability distribution as a collection of probabilities for all possible outcomes. We will emphasize the differences between specific sequences of elementary events, and collections composed of specific sequences that share some overall property. This distinction is essential to statistical thermodynamics, where we are often limited to measurements of overall composition, where each composition is consistent with many different arrangements of molecules. The “indistinguishability” of these different arrangements is directly related to important thermodynamic concepts such as entropy.
In the process we will introduce a number of key probability distributions, including both discrete distributions (most importantly the binomial and multinomial distributions) and continuous distributions (emphasizing Gaussian and decaying exponential distributions). We will describe how to derive various average quantities from probability distributions; in subsequent chapters, such derivations provide a means to directly test and refine statistical thermodynamic models and learn about molecular systems.
One of the most important subjects in chemistry and biology is the reaction of molecules to form new molecules of different sizes, shapes, and types. New covalent bonds are formed, new configurations can be adopted, new complexes and assemblies are built, and old ones are taken apart and rearranged. The application of physical chemistry allows these kinds of transformations to be described quantitatively, providing access to underlying forces and mechanisms, and providing predictive power to describe how complex systems of molecules will react as conditions change.
Biochemical systems almost always involve very large numbers of molecules. Rather than describing the behavior of each individual molecule, which is difficult even for small systems (and yields much more information than is of practical value for large systems), we will seek to understand reactions and material transformations in terms of “distribut...

Inhaltsverzeichnis