Biomolecular Thermodynamics
eBook - ePub

Biomolecular Thermodynamics

From Theory to Application

Douglas Barrick

Partager le livre
  1. 524 pages
  2. English
  3. ePUB (adapté aux mobiles)
  4. Disponible sur iOS et Android
eBook - ePub

Biomolecular Thermodynamics

From Theory to Application

Douglas Barrick

DĂ©tails du livre
Aperçu du livre
Table des matiĂšres
Citations

À propos de ce livre

" an impressive text that addresses a glaring gap in the teaching of physical chemistry, being specifically focused on biologically-relevant systems along with a practical focus
. the ample problems and tutorials throughout are much appreciated."
–Tobin R. Sosnick, Professor and Chair of Biochemistry and Molecular Biology, University of Chicago

"Presents both the concepts and equations associated with statistical thermodynamics in a unique way that is at visual, intuitive, and rigorous. This approach will greatly benefit students at all levels."
–Vijay S. Pande, Henry Dreyfus Professor of Chemistry, Stanford University

" a masterful tour de force 
. Barrick's rigor and scholarship come through in every chapter."
–Rohit V. Pappu, Edwin H. Murty Professor of Engineering, Washington University in St. Louis

This book provides a comprehensive, contemporary introduction to developing a quantitative understanding of how biological macromolecules behave using classical and statistical thermodynamics. The author focuses on practical skills needed to apply the underlying equations in real life examples. The text develops mechanistic models, showing how they connect to thermodynamic observables, presenting simulations of thermodynamic behavior, and analyzing experimental data. The reader is presented with plenty of exercises and problems to facilitate hands-on learning through mathematical simulation.

Douglas E. Barrick is a professor in the Department of Biophysics at Johns Hopkins University. He earned his Ph.D. in biochemistry from Stanford University, and a Ph.D. in biophysics and structural biology from the University of Oregon.

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans paramĂštres et de cliquer sur « RĂ©silier l’abonnement ». C’est aussi simple que cela ! Une fois que vous aurez rĂ©siliĂ© votre abonnement, il restera actif pour le reste de la pĂ©riode pour laquelle vous avez payĂ©. DĂ©couvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptĂ©s aux mobiles peuvent ĂȘtre tĂ©lĂ©chargĂ©s via l’application. La plupart de nos PDF sont Ă©galement disponibles en tĂ©lĂ©chargement et les autres seront tĂ©lĂ©chargeables trĂšs prochainement. DĂ©couvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accĂšs complet Ă  la bibliothĂšque et Ă  toutes les fonctionnalitĂ©s de Perlego. Les seules diffĂ©rences sont les tarifs ainsi que la pĂ©riode d’abonnement : avec l’abonnement annuel, vous Ă©conomiserez environ 30 % par rapport Ă  12 mois d’abonnement mensuel.
Qu’est-ce que Perlego ?
Nous sommes un service d’abonnement Ă  des ouvrages universitaires en ligne, oĂč vous pouvez accĂ©der Ă  toute une bibliothĂšque pour un prix infĂ©rieur Ă  celui d’un seul livre par mois. Avec plus d’un million de livres sur plus de 1 000 sujets, nous avons ce qu’il vous faut ! DĂ©couvrez-en plus ici.
Prenez-vous en charge la synthÚse vocale ?
Recherchez le symbole Écouter sur votre prochain livre pour voir si vous pouvez l’écouter. L’outil Écouter lit le texte Ă  haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l’accĂ©lĂ©rer ou le ralentir. DĂ©couvrez-en plus ici.
Est-ce que Biomolecular Thermodynamics est un PDF/ePUB en ligne ?
Oui, vous pouvez accĂ©der Ă  Biomolecular Thermodynamics par Douglas Barrick en format PDF et/ou ePUB ainsi qu’à d’autres livres populaires dans Medicine et Biochemistry in Medicine. Nous disposons de plus d’un million d’ouvrages Ă  dĂ©couvrir dans notre catalogue.

Informations

Éditeur
CRC Press
Année
2017
ISBN
9781439800201
Édition
1
chapter 1
Probabilities and Statistics in Chemical and Biothermodynamics
Goals and Summary
The goals of this chapter are to familiarize students with the concepts of probabilities and statistics to understand physical chemical principles and to analyze complex problems in chemical and biothermodynamics. The first part of the chapter will focus on events, outcomes, and their combinations. We will develop the concept of the probability distribution as a collection of probabilities for all possible outcomes. We will emphasize the differences between specific sequences of elementary events, and collections composed of specific sequences that share some overall property. This distinction is essential to statistical thermodynamics, where we are often limited to measurements of overall composition, where each composition is consistent with many different arrangements of molecules. The “indistinguishability” of these different arrangements is directly related to important thermodynamic concepts such as entropy.
In the process we will introduce a number of key probability distributions, including both discrete distributions (most importantly the binomial and multinomial distributions) and continuous distributions (emphasizing Gaussian and decaying exponential distributions). We will describe how to derive various average quantities from probability distributions; in subsequent chapters, such derivations provide a means to directly test and refine statistical thermodynamic models and learn about molecular systems.
One of the most important subjects in chemistry and biology is the reaction of molecules to form new molecules of different sizes, shapes, and types. New covalent bonds are formed, new configurations can be adopted, new complexes and assemblies are built, and old ones are taken apart and rearranged. The application of physical chemistry allows these kinds of transformations to be described quantitatively, providing access to underlying forces and mechanisms, and providing predictive power to describe how complex systems of molecules will react as conditions change.
Biochemical systems almost always involve very large numbers of molecules. Rather than describing the behavior of each individual molecule, which is difficult even for small systems (and yields much more information than is of practical value for large systems), we will seek to understand reactions and material transformations in terms of “distribut...

Table des matiĂšres