Antimicrobial and Antiviral Materials
eBook - ePub

Antimicrobial and Antiviral Materials

Polymers, Metals, Ceramics, and Applications

Peerawatt Nunthavarawong, Sanjay Mavinkere Rangappa, Suchart Siengchin, Mathew Thoppil-Mathew, Peerawatt Nunthavarawong, Sanjay Mavinkere Rangappa, Suchart Siengchin, Mathew Thoppil-Mathew

Buch teilen
  1. 250 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Antimicrobial and Antiviral Materials

Polymers, Metals, Ceramics, and Applications

Peerawatt Nunthavarawong, Sanjay Mavinkere Rangappa, Suchart Siengchin, Mathew Thoppil-Mathew, Peerawatt Nunthavarawong, Sanjay Mavinkere Rangappa, Suchart Siengchin, Mathew Thoppil-Mathew

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

Emerging microbial and viral infections are a serious challenge to health, safety, and economics around the world. Antimicrobial and antiviral technologies are needed to disrupt the progression and replication of bacteria and viruses and to counter their rapidly evolving resistance. This book discusses recent developments in materials science and engineering in combating infectious diseases and explores advances in antimicrobial and antiviral materials, including polymers, metals, and ceramics and their applications in the fight against pathogens.

Features

• Covers progress in biomimetic antimicrobial and antiviral materials and antimicrobial/antiviral bulk materials and coatings

• Describes modern methods for disinfection of biomedical materials against microbial and viral infection resistance, especially for depressing novel coronavirus (COVID-19)

• Details methods to improve material properties to have a longer service life in combating infection

• Emphasizes chemical, physical, mechanical, tribological, and antimicrobial/antiviral properties • Offers current and future applications of emerging antimicrobial/antiviral technologies

This book will be of interest to materials researchers and industry professionals focusing on antimicrobial and antiviral applications.

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Antimicrobial and Antiviral Materials als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Antimicrobial and Antiviral Materials von Peerawatt Nunthavarawong, Sanjay Mavinkere Rangappa, Suchart Siengchin, Mathew Thoppil-Mathew, Peerawatt Nunthavarawong, Sanjay Mavinkere Rangappa, Suchart Siengchin, Mathew Thoppil-Mathew im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Technik & Maschinenbau & Biomedizinwissenschaft. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Verlag
CRC Press
Jahr
2022
ISBN
9781000541212

1 Introduction to Antimicrobial and Antiviral Materials

DOI: 10.1201/9781003143093-1
Nunthavarawong P, Sanjay M R, Siengchin S, and Thoppil-Mathew M

CONTENTS

  1. 1.1 Introduction
  2. References

1.1 INTRODUCTION

The fight against emerging microbial/viral infections remains a worldwide challenge. According to the World Health Organization (WHO), infectious disease control regarding microbial/viral inactivation continues to be a matter for serious concern. Infections caused by microorganisms are a significant source of concern in a variety of industries, including medical devices, drugs, hospital surfaces/furniture, dental restoration and surgery equipment, health care products and hygienic applications, water purification systems, textiles, food packaging, and storage, major or domestic appliances, aeronautics, and so forth [1].
Microbial/viral contaminants are viable on any contacting surfaces that become harmful to health and safety. Antimicrobial/antiviral technologies can be well defined as stuff that enables to harm or disable the progression and replication of bacteria/ viruses. Recently, polymeric-, metallic-, and ceramic-based composite materials that are resistant to microorganisms have received much attention.
Among all kinds of materials, polymeric materials, including natural polymers, are suitable for preparing antimicrobial materials such as films and coatings [2]. Antiviral polymers are made by combining an organic backbone with electrically charged moieties like polyanions (such as carboxylate-containing polymers) or polycations (such as quaternary ammonium containing polymers) to produce ion-containing polymers with antiviral characteristics [3].
Interestingly, natural materials like copper and wood are the most effective at both killing germs and stopping bacteria from reproducing. Copper and its alloys, such as brass and bronze, have the intrinsic capacity to kill a wide range of dangerous bacteria relatively quickly and effectively [4-5]. Many herbal antimicrobial agents are available in nature, such as clove, portulaca, Tribulus, eryngium, cinnamon. turmeric, ginger, thyme, pennyroyal, mint, fennel, chamomile, burdock, eucalyptus, primrose, lemon balm, mallow, and garlic [6].
Of the unique features of metals, metal-based antimicrobial macromolecules are emerging as a viable alternative to traditional platforms because they combine many modes of action into a single platform [7]. Because of the primary microbicidal properties associated with these materials, viz. silver, silver oxide, titanium, zinc oxide, nickel, copper, copper oxide, gold, aluminum oxide, magnesium oxide, antimicrobial metallic materials, and their uses have grown tremendously [4|.
Antiviral and viricidal coatings are developed using various ways, including altering the surface of a substrate with antiviral polymers, including metal ions/oxides, and using functional nanoparticles [8]. Antibacterial and antiviral materials of diverse kinds, such as small-molecule organics, synthetic, and biodegradable polymers, silver, TiO2, and copper-derived compounds, play an important role in treating infectious diseases caused by bacteria and viruses, both expected and unforeseen [9].
Positively charged polymers with hydrophobic chains promise antibacterial reagents with a broad antimicrobial spectrum and long persistence [10]. Poly(para-phenylene ethynylene) (PPE), poly(para-phenylene vinylene) (PPV), and poly(diacetylene) (PDA) are conjugated polymeric materials with unique size and structure-dependent chemical and photophysical properties, as well as strong photoinducible antibacterial activity [11]. In a recent study, sodium pentaborate pentahydrate and triclosan are applied to cotton fabrics in order to gain antimicrobial and antiviral properties [12].
Metals or metal nanoparticles can be used to make antibacterial polymeric materials, which have many potentials. Antibacterial polymer-based materials are especially true in situations involving food contact and packaging [13]. Antibacterial, antifungal, antiviral, and antimatrix metalloproteinase properties have all been discovered in quaternary ammonium compounds [14]. Significant discoveries in the field of nanobiomedicine have occurred in areas and numbers that indicate that metal oxide nanoparticles have immense application potential and market value [15]. Graphene and graphene-related materials (GRMs) have a wide range of exciting physicochemical, electrical, optical, antiviral, antibacterial, and other properties [16].
Recent breakthroughs in plasma-assisted surface functionalization of polymer surfaces show that plasma-assisted surface functionalization techniques for synthesizing antiviral polymers with targeted antiviral applications spanning from in vitro prevention to in vivo therapy are promising [17]. The antimicrobial study found that antimicrobial efficiency was influenced by zinc oxide content, with antimicrobial materials having the most action against gram-negative bacteria [18]. N,N-dodecyl, methyl-polyurethane (Quat-12-PU), a polyurethane-based antimicrobial polymer, with high antiviral and antibacterial activity when coated onto surfaces and antibacterial activity when electrospun into nanofibers [19].
For industrial and biomedical applications, antibacterial gum-based biocomposites were employed. Microbial gums, plant exudate gums, and seed gums are all types of antimicrobial gums. In the biomedical field, naturally occurring gum polysaccharides have various uses [20]. The as-synthesized star polymers show promise in antibacterial and antiviral applications [21]. Photoinduced antimicrobial vitamin K compounds-containing nanofibrous membranes (VNFMs) could offer fresh insights into the production of non-toxic, reusable photoinduced antimicrobial materials that could be used in personal protective equipment to increase biological protection [22].

REFERENCES

  • 1. Muñoz-Bonilla, A., & Fernández-García, M, (2012). Polymeric materials with antimicrobial activity. Progress in Polymer Science, 37(2), 281-339. DOI:10.1016/j.progpolymsci.2011.08.005.
  • 2. Mallakpour, S., Azadi, E., & Hussain, C. M. (2021). Recent breakthroughs of antibacterial and antiviral protective polymeric materials during COVID-19 pandemic and postpandemic: Coating, packaging, and textile applications. Current Opinion in Colloid & Interface Science, 101480. DOI:10.1016/j.cocis.2021.101480.
  • 3. Jarach, N., Dodiuk, H., & Kenig, S. (2020). Polymers in the medical antiviral frontline. Polymers, 22(8), 1727. DOI:10.3390/polym12081727.
  • 4. Makvandi, P., Wang, C. Y., Zare, E. N., Borzacchiello, A., Niu, L. N., & Tay, F. R. (2020). Metal-based nanomaterials in biomedical applications: Antimicrobial activity and cytotoxicity aspects. Advanced Functional Materials, 30(22), 1910021. DOI:10.1002/adfm.201910021.
  • 5. Zare, E. N., Jamaledin, R., Naserzadeh, R, Afjeh-Dana, E., Ashtari, B., Hosseinzadeh, M., . . . Makvandi, P. (2019a). Metal-based nanostractures/PLGA nanocomposites: Antimicrobial activity, cytotoxicity, and their biomedical applications. ACS Applied Materials & Interfaces, 72(3), 3279-3300. DOI:10.1021/acsami.9b19435.
  • 6. Parham, S., Kharazi, A. Z., Bakhsheshi-Rad, H. R., Nur, H., Ismail, A. F., Sharif, S., ... Berto, F. (2020). Antioxidant, antimicrobial and antiviral properties of herbal materi als. Antioxidants, 9(12), 1309. DOI:10.3390/antiox9121309.
  • 7. Abd-El-Aziz, A. S., Agatemor, C., & Etkin, N. (2017). Antimicrobial resistance challenged with metal-based antimicrobial macromolecules. Biomaterials, 118, 27-50. DOI:10.1016/j.biomaterials.2016.12.002.
  • 8. Pemmada, R., Zhu, X., Dash, M., Zhou, Y., Ramakrishna, S., Peng, X., & Nanda, H. S. (2020). Science-based strategies of antiviral coatings with viricidal properties for the COVID-19 like pandemics. Materials, 73(18), 4041. DOI:10.3390/ma13184041.
  • 9. Balasubramaniam, B., Prateek, R. S., Saraf, M., Kar, P, Singh, S. P., . . . Gupta, R. K. (2020). Antibacterial and antiviral functional materials: Chemistry and biological activity toward tackling COVID-19-like pandemics. ACS Pharmacology & Translational Science, 4(1), 8-54. DOI:10.1021/acsptsci.0c00174.
  • 10. Pan, Y., Xia, Q., & Xiao, H. (2019). Cationic polymers with tailored structures for rendering polysaccharide-based materials antimicrobial: An overview. Polymers, 77(8), 1283. DOI:10.3390/polym11081283.
  • 11. Wang, Y., Canady, T. D., Zhou, Z., Tang, Y., Price, D. N., Bear, D. G., . . . Whitten, D. G. (2011). Cationic phenylene ethynyletie polymers and oligomers exhibit efficient antiviral activity. ACS Applied Mater...

Inhaltsverzeichnis