Antimicrobial and Antiviral Materials
eBook - ePub

Antimicrobial and Antiviral Materials

Polymers, Metals, Ceramics, and Applications

Peerawatt Nunthavarawong, Sanjay Mavinkere Rangappa, Suchart Siengchin, Mathew Thoppil-Mathew, Peerawatt Nunthavarawong, Sanjay Mavinkere Rangappa, Suchart Siengchin, Mathew Thoppil-Mathew

Partager le livre
  1. 250 pages
  2. English
  3. ePUB (adapté aux mobiles)
  4. Disponible sur iOS et Android
eBook - ePub

Antimicrobial and Antiviral Materials

Polymers, Metals, Ceramics, and Applications

Peerawatt Nunthavarawong, Sanjay Mavinkere Rangappa, Suchart Siengchin, Mathew Thoppil-Mathew, Peerawatt Nunthavarawong, Sanjay Mavinkere Rangappa, Suchart Siengchin, Mathew Thoppil-Mathew

DĂ©tails du livre
Aperçu du livre
Table des matiĂšres
Citations

À propos de ce livre

Emerging microbial and viral infections are a serious challenge to health, safety, and economics around the world. Antimicrobial and antiviral technologies are needed to disrupt the progression and replication of bacteria and viruses and to counter their rapidly evolving resistance. This book discusses recent developments in materials science and engineering in combating infectious diseases and explores advances in antimicrobial and antiviral materials, including polymers, metals, and ceramics and their applications in the fight against pathogens.

Features

‱ Covers progress in biomimetic antimicrobial and antiviral materials and antimicrobial/antiviral bulk materials and coatings

‱ Describes modern methods for disinfection of biomedical materials against microbial and viral infection resistance, especially for depressing novel coronavirus (COVID-19)

‱ Details methods to improve material properties to have a longer service life in combating infection

‱ Emphasizes chemical, physical, mechanical, tribological, and antimicrobial/antiviral properties ‱ Offers current and future applications of emerging antimicrobial/antiviral technologies

This book will be of interest to materials researchers and industry professionals focusing on antimicrobial and antiviral applications.

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans paramĂštres et de cliquer sur « RĂ©silier l’abonnement ». C’est aussi simple que cela ! Une fois que vous aurez rĂ©siliĂ© votre abonnement, il restera actif pour le reste de la pĂ©riode pour laquelle vous avez payĂ©. DĂ©couvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptĂ©s aux mobiles peuvent ĂȘtre tĂ©lĂ©chargĂ©s via l’application. La plupart de nos PDF sont Ă©galement disponibles en tĂ©lĂ©chargement et les autres seront tĂ©lĂ©chargeables trĂšs prochainement. DĂ©couvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accĂšs complet Ă  la bibliothĂšque et Ă  toutes les fonctionnalitĂ©s de Perlego. Les seules diffĂ©rences sont les tarifs ainsi que la pĂ©riode d’abonnement : avec l’abonnement annuel, vous Ă©conomiserez environ 30 % par rapport Ă  12 mois d’abonnement mensuel.
Qu’est-ce que Perlego ?
Nous sommes un service d’abonnement Ă  des ouvrages universitaires en ligne, oĂč vous pouvez accĂ©der Ă  toute une bibliothĂšque pour un prix infĂ©rieur Ă  celui d’un seul livre par mois. Avec plus d’un million de livres sur plus de 1 000 sujets, nous avons ce qu’il vous faut ! DĂ©couvrez-en plus ici.
Prenez-vous en charge la synthÚse vocale ?
Recherchez le symbole Écouter sur votre prochain livre pour voir si vous pouvez l’écouter. L’outil Écouter lit le texte Ă  haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l’accĂ©lĂ©rer ou le ralentir. DĂ©couvrez-en plus ici.
Est-ce que Antimicrobial and Antiviral Materials est un PDF/ePUB en ligne ?
Oui, vous pouvez accĂ©der Ă  Antimicrobial and Antiviral Materials par Peerawatt Nunthavarawong, Sanjay Mavinkere Rangappa, Suchart Siengchin, Mathew Thoppil-Mathew, Peerawatt Nunthavarawong, Sanjay Mavinkere Rangappa, Suchart Siengchin, Mathew Thoppil-Mathew en format PDF et/ou ePUB ainsi qu’à d’autres livres populaires dans Technik & Maschinenbau et Biomedizinwissenschaft. Nous disposons de plus d’un million d’ouvrages Ă  dĂ©couvrir dans notre catalogue.

Informations

Éditeur
CRC Press
Année
2022
ISBN
9781000541212

1 Introduction to Antimicrobial and Antiviral Materials

DOI: 10.1201/9781003143093-1
Nunthavarawong P, Sanjay M R, Siengchin S, and Thoppil-Mathew M

CONTENTS

  1. 1.1 Introduction
  2. References

1.1 INTRODUCTION

The fight against emerging microbial/viral infections remains a worldwide challenge. According to the World Health Organization (WHO), infectious disease control regarding microbial/viral inactivation continues to be a matter for serious concern. Infections caused by microorganisms are a significant source of concern in a variety of industries, including medical devices, drugs, hospital surfaces/furniture, dental restoration and surgery equipment, health care products and hygienic applications, water purification systems, textiles, food packaging, and storage, major or domestic appliances, aeronautics, and so forth [1].
Microbial/viral contaminants are viable on any contacting surfaces that become harmful to health and safety. Antimicrobial/antiviral technologies can be well defined as stuff that enables to harm or disable the progression and replication of bacteria/ viruses. Recently, polymeric-, metallic-, and ceramic-based composite materials that are resistant to microorganisms have received much attention.
Among all kinds of materials, polymeric materials, including natural polymers, are suitable for preparing antimicrobial materials such as films and coatings [2]. Antiviral polymers are made by combining an organic backbone with electrically charged moieties like polyanions (such as carboxylate-containing polymers) or polycations (such as quaternary ammonium containing polymers) to produce ion-containing polymers with antiviral characteristics [3].
Interestingly, natural materials like copper and wood are the most effective at both killing germs and stopping bacteria from reproducing. Copper and its alloys, such as brass and bronze, have the intrinsic capacity to kill a wide range of dangerous bacteria relatively quickly and effectively [4-5]. Many herbal antimicrobial agents are available in nature, such as clove, portulaca, Tribulus, eryngium, cinnamon. turmeric, ginger, thyme, pennyroyal, mint, fennel, chamomile, burdock, eucalyptus, primrose, lemon balm, mallow, and garlic [6].
Of the unique features of metals, metal-based antimicrobial macromolecules are emerging as a viable alternative to traditional platforms because they combine many modes of action into a single platform [7]. Because of the primary microbicidal properties associated with these materials, viz. silver, silver oxide, titanium, zinc oxide, nickel, copper, copper oxide, gold, aluminum oxide, magnesium oxide, antimicrobial metallic materials, and their uses have grown tremendously [4|.
Antiviral and viricidal coatings are developed using various ways, including altering the surface of a substrate with antiviral polymers, including metal ions/oxides, and using functional nanoparticles [8]. Antibacterial and antiviral materials of diverse kinds, such as small-molecule organics, synthetic, and biodegradable polymers, silver, TiO2, and copper-derived compounds, play an important role in treating infectious diseases caused by bacteria and viruses, both expected and unforeseen [9].
Positively charged polymers with hydrophobic chains promise antibacterial reagents with a broad antimicrobial spectrum and long persistence [10]. Poly(para-phenylene ethynylene) (PPE), poly(para-phenylene vinylene) (PPV), and poly(diacetylene) (PDA) are conjugated polymeric materials with unique size and structure-dependent chemical and photophysical properties, as well as strong photoinducible antibacterial activity [11]. In a recent study, sodium pentaborate pentahydrate and triclosan are applied to cotton fabrics in order to gain antimicrobial and antiviral properties [12].
Metals or metal nanoparticles can be used to make antibacterial polymeric materials, which have many potentials. Antibacterial polymer-based materials are especially true in situations involving food contact and packaging [13]. Antibacterial, antifungal, antiviral, and antimatrix metalloproteinase properties have all been discovered in quaternary ammonium compounds [14]. Significant discoveries in the field of nanobiomedicine have occurred in areas and numbers that indicate that metal oxide nanoparticles have immense application potential and market value [15]. Graphene and graphene-related materials (GRMs) have a wide range of exciting physicochemical, electrical, optical, antiviral, antibacterial, and other properties [16].
Recent breakthroughs in plasma-assisted surface functionalization of polymer surfaces show that plasma-assisted surface functionalization techniques for synthesizing antiviral polymers with targeted antiviral applications spanning from in vitro prevention to in vivo therapy are promising [17]. The antimicrobial study found that antimicrobial efficiency was influenced by zinc oxide content, with antimicrobial materials having the most action against gram-negative bacteria [18]. N,N-dodecyl, methyl-polyurethane (Quat-12-PU), a polyurethane-based antimicrobial polymer, with high antiviral and antibacterial activity when coated onto surfaces and antibacterial activity when electrospun into nanofibers [19].
For industrial and biomedical applications, antibacterial gum-based biocomposites were employed. Microbial gums, plant exudate gums, and seed gums are all types of antimicrobial gums. In the biomedical field, naturally occurring gum polysaccharides have various uses [20]. The as-synthesized star polymers show promise in antibacterial and antiviral applications [21]. Photoinduced antimicrobial vitamin K compounds-containing nanofibrous membranes (VNFMs) could offer fresh insights into the production of non-toxic, reusable photoinduced antimicrobial materials that could be used in personal protective equipment to increase biological protection [22].

REFERENCES

  • 1. Muñoz-Bonilla, A., & FernĂĄndez-GarcĂ­a, M, (2012). Polymeric materials with antimicrobial activity. Progress in Polymer Science, 37(2), 281-339. DOI:10.1016/j.progpolymsci.2011.08.005.
  • 2. Mallakpour, S., Azadi, E., & Hussain, C. M. (2021). Recent breakthroughs of antibacterial and antiviral protective polymeric materials during COVID-19 pandemic and postpandemic: Coating, packaging, and textile applications. Current Opinion in Colloid & Interface Science, 101480. DOI:10.1016/j.cocis.2021.101480.
  • 3. Jarach, N., Dodiuk, H., & Kenig, S. (2020). Polymers in the medical antiviral frontline. Polymers, 22(8), 1727. DOI:10.3390/polym12081727.
  • 4. Makvandi, P., Wang, C. Y., Zare, E. N., Borzacchiello, A., Niu, L. N., & Tay, F. R. (2020). Metal-based nanomaterials in biomedical applications: Antimicrobial activity and cytotoxicity aspects. Advanced Functional Materials, 30(22), 1910021. DOI:10.1002/adfm.201910021.
  • 5. Zare, E. N., Jamaledin, R., Naserzadeh, R, Afjeh-Dana, E., Ashtari, B., Hosseinzadeh, M., . . . Makvandi, P. (2019a). Metal-based nanostractures/PLGA nanocomposites: Antimicrobial activity, cytotoxicity, and their biomedical applications. ACS Applied Materials & Interfaces, 72(3), 3279-3300. DOI:10.1021/acsami.9b19435.
  • 6. Parham, S., Kharazi, A. Z., Bakhsheshi-Rad, H. R., Nur, H., Ismail, A. F., Sharif, S., ... Berto, F. (2020). Antioxidant, antimicrobial and antiviral properties of herbal materi als. Antioxidants, 9(12), 1309. DOI:10.3390/antiox9121309.
  • 7. Abd-El-Aziz, A. S., Agatemor, C., & Etkin, N. (2017). Antimicrobial resistance challenged with metal-based antimicrobial macromolecules. Biomaterials, 118, 27-50. DOI:10.1016/j.biomaterials.2016.12.002.
  • 8. Pemmada, R., Zhu, X., Dash, M., Zhou, Y., Ramakrishna, S., Peng, X., & Nanda, H. S. (2020). Science-based strategies of antiviral coatings with viricidal properties for the COVID-19 like pandemics. Materials, 73(18), 4041. DOI:10.3390/ma13184041.
  • 9. Balasubramaniam, B., Prateek, R. S., Saraf, M., Kar, P, Singh, S. P., . . . Gupta, R. K. (2020). Antibacterial and antiviral functional materials: Chemistry and biological activity toward tackling COVID-19-like pandemics. ACS Pharmacology & Translational Science, 4(1), 8-54. DOI:10.1021/acsptsci.0c00174.
  • 10. Pan, Y., Xia, Q., & Xiao, H. (2019). Cationic polymers with tailored structures for rendering polysaccharide-based materials antimicrobial: An overview. Polymers, 77(8), 1283. DOI:10.3390/polym11081283.
  • 11. Wang, Y., Canady, T. D., Zhou, Z., Tang, Y., Price, D. N., Bear, D. G., . . . Whitten, D. G. (2011). Cationic phenylene ethynyletie polymers and oligomers exhibit efficient antiviral activity. ACS Applied Mater...

Table des matiĂšres