
Handbuch Data Science mit Python
Grundlegende Tools für die Arbeit mit Daten
- 575 Seiten
- German
- ePUB (handyfreundlich)
- Über iOS und Android verfügbar
Handbuch Data Science mit Python
Grundlegende Tools für die Arbeit mit Daten
Über dieses Buch
Der unverzichtbare Werkzeugkasten für Data Science in der 2. Auflage
- Das bewährte Standardwerk jetzt in vollständig aktualisierter Neuauflage
- Behandelt die neuesten Versionen von IPython, NumPy, pandas, Matplotlib und Scikit-Learn
- Die leicht nachvollziehbaren Beispiele helfen Ihnen bei der erfolgreichen Einrichtung und Nutzung der Data-Science-Tools
- Inklusive Jupyter Notebooks, die es Ihnen ermöglichen, den Code direkt beim Lesen auszuprobieren
Für viele Data Scientists ist Python die Sprache der Wahl, weil zahlreiche ausgereifte Bibliotheken zum Speichern, Bearbeiten und Auswerten von Daten verfügbar sind. Jake VanderPlas versammelt in dieser 2. Auflage seines Standardwerks alle wichtigen Datenanalyse Tools in einem Band und erläutert deren Einsatz in der Praxis. Beschrieben werden IPython, Jupyter, NumPy, Pandas, Matplotlib, Scikit Learn und verwandte Werkzeuge.
Für Datenanalystinnen und analysten und Data Cruncher mit Python Kenntnissen ist dieses umfassende Handbuch von unschätzbarem Wert bei der Erledigung ihrer täglichen Aufgaben. Dazu gehören die Manipulation, Umwandlung und Bereinigung von Daten, die Visualisierung verschiedener Datentypen sowie die Nutzung von Daten zum Erstellen von Statistiken und Machine Learning Modellen.
Dieses Handbuch beschreibt die folgenden Tools:
- IPython und Jupyter bieten eine Umgebung für Berechnungen, die von vielen Data Scientists genutzt wird
- NumPy stellt das ndarray zum effizienten Speichern und Bearbeiten dicht gepackter Datenarrays bereit
- Pandas verfügt über das DataFrameObjekt für die Speicherung und Manipulation gelabelter und spaltenorientierter Daten
- Matplotlib ermöglicht die flexible und vielseitige Visualisierung von Daten
- ScikitLearn unterstützt bei der Implementierung der wichtigsten und gebräuchlichsten Algorithmen für das Machine Learning
»Jake beschreibt weit mehr als die Grundlagen dieser Open-Source-Tools; er erläutert die zugrunde liegenden Konzepte, Vorgehensweisen und Abstraktionen in klarer Sprache und mit verständlichen Erklärungen.« -- Brian Granger, Physikprofessor und Mitbegründer des Jupyter-Projekts
Häufig gestellte Fragen
- Elementar ist ideal für Lernende und Profis, die sich mit einer Vielzahl von Themen beschäftigen möchten. Erhalte Zugang zur Basic-Bibliothek mit über 800.000 vertrauenswürdigen Titeln und Bestsellern in den Bereichen Wirtschaft, persönliche Weiterentwicklung und Geisteswissenschaften. Enthält unbegrenzte Lesezeit und die Standardstimme für die Funktion „Vorlesen“.
- Pro: Perfekt für fortgeschrittene Lernende und Forscher, die einen vollständigen, uneingeschränkten Zugang benötigen. Schalte über 1,4 Millionen Bücher zu Hunderten von Themen frei, darunter akademische und hochspezialisierte Titel. Das Pro-Abo umfasst auch erweiterte Funktionen wie Premium-Vorlesen und den Recherche-Assistenten.
Bitte beachte, dass wir Geräte, auf denen die Betriebssysteme iOS 13 und Android 7 oder noch ältere Versionen ausgeführt werden, nicht unterstützen können. Mehr über die Verwendung der App erfahren.
Information
Inhaltsverzeichnis
- Cover
- Titel
- Impressum
- Inhalt
- Einleitung
- Teil I: Mehr als normales Python: Jupyter
- Teil II: Einführung in NumPy
- Teil III: Datenbearbeitung mit Pandas
- Teil IV: Visualisierung mit Matplotlib
- Teil V: Machine Learning
- Fußnoten
- Index
- Über den Autor
- Kolophon