Exactly Solvable Models In Many-body Theory
eBook - ePub

Exactly Solvable Models In Many-body Theory

N H March, G G N Angilella

Buch teilen
  1. 348 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Exactly Solvable Models In Many-body Theory

N H March, G G N Angilella

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

The book reviews several theoretical, mostly exactly solvable, models for selected systems in condensed states of matter, including the solid, liquid, and disordered states, and for systems of few or many bodies, both with boson, fermion, or anyon statistics. Some attention is devoted to models for quantum liquids, including superconductors and superfluids. Open problems in relativistic fields and quantum gravity are also briefly reviewed.

The book ranges almost comprehensively, but concisely, across several fields of theoretical physics of matter at various degrees of correlation and at different energy scales, with relevance to molecular, solid-state, and liquid-state physics, as well as to phase transitions, particularly for quantum liquids. Mostly exactly solvable models are presented, with attention also to their numerical approximation and, of course, to their relevance for experiments.

Contents:

  • Low-Order Density Matrices
  • Solvable Models for Small Clusters of Fermions
  • Small Clusters of Bosons
  • Anyon Statistics with Models
  • Superconductivity and Superfluidity
  • Exact Results for an Isolated Impurity in a Solid
  • Pair Potential and Many-Body Force Models for Liquids
  • Anderson Localization in Disordered Systems
  • Statistical Field Theory: Especially Models of Critical Exponents
  • Relativistic Fields
  • Towards Quantum Gravity
  • Appendices


Readership: Graduate students and researchers in condensed matter theory.

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Exactly Solvable Models In Many-body Theory als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Exactly Solvable Models In Many-body Theory von N H March, G G N Angilella im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Physical Sciences & Condensed Matter. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Verlag
WSPC
Jahr
2016
ISBN
9789813140165

Chapter 1

Low-order density matrices

1.1 Low-order spinless density matrix theory

We start by considering a generic assembly of N electrons, characterized by the Hamiltonian (in atomic units)
images
(1.1a)
images
(1.1b)
images
(1.1c)
images
(1.1d)
Here, as usual, T is the total kinetic energy operator, U denotes the electron-electron (e-e) repulsion energy operator, and V denotes the electron-nucleus (e-n) attraction energy operator, respectively. In realistic situations, one obviously has
images
(1.2a)
images
(1.2b)
(for a molecule, cluster, or solid characterized by M nuclei of charge ZJ, placed at fixed positions RJ, J = 1, . . . M), although the explicit functional form of u and v may be kept as indicated, in order to also embrace model systems.
The Nth-order density matrix (DM) associated with a normalized eigenfunction Ψ(x1, . . . xN) of the Schrödinger equation HΨ = EΨ is then defined as
images
(1.3)
where xi = (ri, si) is a shorthand notation for coordinates and spin variables of the ith electron. More generally, the pth-order reduced DM (pDM, with p < N) is defined by integrating out (Np) coordinates as (see ter Haar, 1961; Holas and March, 1995, and references therein)
images
(1.4)
where, consistently with the above notation,
Images
In cases where spin is not of interest, one considers a spin-averaged or spinless DM defined as
images
(1.5)
while the diagonal elements of the spinless DM are denoted by
images
(1.6)
with np ≥ 0. The basic quantity of interest in Density Functional Theory (DFT) is thus n(r) = n1(r) = ρ1(r; r), where the subscript ‘1’ can be omitted, for simplicity.
Expressing the Hamiltonian in second quantization as
images
(1.7)
where
images
(1.8a)
images
(1.8b)
are creation and annihilation quantum field operators at x, respectively, with
Images
and ĉk fermion creation and annihilation operators,
Images
Images
in the single-particle spin-orbitals φk(x), the reduced pDM can be viewed as the quantum average of the operator
images
(1.9)
The same Hamiltonian can then be expressed in terms of 1DM and 2DM as
images
(1.10)
Similarly, the total (e.g. ground-state) energy of the system can be expressed as
images
(1.11)
This immediately generalizes also in presence of an external, one-body potential.
Moreover, since the Hamiltonian contains only (at most) 2-body interactions, and given the fact that a (p − 1)DM can be related to a pDM as
images
(1.12)
one can then express the total energy E as a functional of γ2 alone, i.e. of its 2-bo...

Inhaltsverzeichnis