General Relativity
eBook - ePub

General Relativity

A First Examination

Marvin Blecher

Buch teilen
  1. 192 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

General Relativity

A First Examination

Marvin Blecher

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

This textbook is suitable for a one-semester introduction to General Relativity for advanced undergraduates in physics and engineering. The book is concise so that the entire material can be covered in the one-semester time frame. Besides, the readers are introduced to the subject easily without the need for advanced mathematics. Though concise, the theory development is lucid and the readers are exposed to possible analytic calculations. Full solutions to some important problems are provided, and the experimental evidence is discussed in detail.

Contents:

  • Review of Special Relativity
  • Vectors and Tensors in Spacetime
  • Covariant Differentiation, Equations of Motion
  • Curvature
  • Gravity and General Relativity
  • Solar System Tests of General Relativity
  • Black Holes
  • Gravitational Waves
  • Cosmolgy


Readership: Undergraduate and graduate students in physics courses.

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist General Relativity als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu General Relativity von Marvin Blecher im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Physical Sciences & Cosmology. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Verlag
WSPC
Jahr
2016
ISBN
9789813108493

Chapter 1

Review of Special Relativity

1.1 Introduction

The theory of Special Relativity (SR) was introduced by A. Einstein in 1905. It deals with the observations of inertial observers in the absence of gravity. The theory of General Relativity (GR) that includes gravitation (and thus acceleration) was published in 1915. For English translations see [Einstein (1905)]. The latter theory predicted the deflection of light near a massive body like the sun. When a British team led by A. S. Eddington confirmed this prediction near the end of the first world war, Einstein became world famous, even among people who had no particular interest in science.
In relativity an observation is the assignment of coordinates, xμ, μ = 0,1,2,3, for the time and space location of an event. Space is continuous and functions of the coordinates can be differentiated. Upon partial differentiation with respect to one of the coordinates, the others are held constant. This insures that the coordinates are independent,
image
As will be seen,
image
is the Kronecker delta tensor. Note the shorthand notation for the partial derivative by use of a comma. Such a shorthand will keep some of the formulas of GR, with many partial derivatives, to a reasonable length. In rectangular coordinates, xμ = (t, x, y, z). If curvilinear coordinates are used, the coordinates, xμ′, are different and a rotation carries you from one set of coordinates to the other. In cylindrical coordinates, xμ = (t, ρ, ϕ, z), because as illustrated in Fig. 1.1, the rotation changes the direction indicating unit vectors, êx, êyêρ, êϕ. Similarly for spherical coordinates, xμ′ = (t, θ, ϕ, r), since, êρ, êzêθ, êr. Other texts employ an extra renaming and take xμ′=0−3 = t, r, θ, ϕ, but a rose by any name would smell sweet. Note, the spatial components of vectors change in the same way as the unit vectors.
image
Fig. 1.1 Rotation relations for changing unit vectors from one coordinate system to another.
The time of the event is read on a clock at rest with respect to the observer, at the spatial coordinates of the event. In the inertial frames of SR, an observer may suppose that there are synchronized clocks at rest at every point in space. This would not be the case when gravity is taken into account because such clocks would run at different rates in a varying gravitational field. Simultaneous events for a given observer are those occuring at the same time on the clocks nearest them, that are at rest with respect to the observer.
Einstein developed SR from two postulates: (1) the laws of physics are the same for all inertial observers no matter their relative velocities; (2) all inertial observers measure the same speed of light in vacuum, c = 3 × 108m/s. It is the second postulate that causes conflict with the Newtonian concept of time flowing independent of everything else. This leads to the observation that events simultaneous to one observer may not be so to another. Also c becomes the limiting speed in order to preserve causality. In GR the the word “inertial” is removed and the principle of equivalence, no gravitational effect is experienced when freely falling in a uniform gravitational field, must be taken into account.
In hindsight it is easy to see where the postulates come from. Various inertial observers in relative motion do electromagnetic experiments in their own rest frames. They find that the equations of Maxwell for the electric, magnetic fields
image
explain the results. Further, in vacuum and using MKS units, each finds they lead to a wave equation with a unique velocity,
image
As c is so special in SR and GR, it is convenient to work in a system of units where velocities are dimensionless and, c = 1. Then time is expressed in meters like the other coordinates and acceleration is expressed in inverse meters:
image
Similarly, in GR, Newton’s gravitational constant, G, is so special that it is convenient to also use, G = 1. This leads to the natural system of units. Here other mechanical quantities like mass, energy, momentum and angular momentum can be expressed in meters to the correct power:
image
Suppose a result is obtained in naturalized units for say, ħ = h/(2π) = 2.612 × 10−70m2, where h is Planck’s constant. One can calculate the value in MKS units by noting that in this system the units are those of angular momentum, kg m2s−1. Then, multiply the value in natural units by unity with a quantity that expressed in MKS units will give the desired units,
image

1.2 Lorentz Transform

Two observers O and O′ are considered. They use parallel axes and rectangular coordinates. Rotations, like those in Fig. 1.1, allow them to align their, z axes along the relative velocity. Thus, O uses, xμ, and says O′ is moving in the, z direction with speed, V (< 1), while O′ uses, xμ′, and says O is moving in the, −z direction with speed, V.
When their origins overlapped the clocks were synchronized, t = x0 = t′ = x0′ = 0. In this geometry, (x, y) = (x′, y′), or x1,2 = x1′,2′, because there is no relative motion in these directions. However, because, c = 1, for both observers, space and time are inter-connected and now termed spacetime. if O′ says that events led to changes in coordinates, dz′ = dx3′, dt′ = dx0′, the components of the displacement vector, drμ′, then O would calculate from the chain rule of differential calculus,
image
This is a linear transform because the vector components appear to the power unity. The coefficients, the partial derivatives, multiplying the vector components are relations between the coordinates of the different frames and are independent of the vectors. Thus such a transform must work, not only for the displacement vector, but for all vectors. If a set of four quantities, Vμ, do not transform as above, then they are not components of a vector.
For the Lorentz transform, the partial derivatives will soon be obtained. If the transfor...

Inhaltsverzeichnis