Algebra, Logic and Combinatorics
eBook - ePub

Algebra, Logic and Combinatorics

Shaun Bullett, Tom Fearn;Frank Smith

Buch teilen
  1. 184 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Algebra, Logic and Combinatorics

Shaun Bullett, Tom Fearn;Frank Smith

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

This book leads readers from a basic foundation to an advanced level understanding of algebra, logic and combinatorics. Perfect for graduate or PhD mathematical-science students looking for help in understanding the fundamentals of the topic, it also explores more specific areas such as invariant theory of finite groups, model theory, and enumerative combinatorics.

Algebra, Logic and Combinatorics is the third volume of the LTCC Advanced Mathematics Series. This series is the first to provide advanced introductions to mathematical science topics to advanced students of mathematics. Edited by the three joint heads of the London Taught Course Centre for PhD Students in the Mathematical Sciences (LTCC), each book supports readers in broadening their mathematical knowledge outside of their immediate research disciplines while also covering specialized key areas.


Contents:

  • Enumerative Combinatorics (Peter J Cameron)
  • Introduction to the Finite Simple Groups (Robert A Wilson)
  • Introduction to Representations of Algebras and Quivers (Anton Cox)
  • The Invariant Theory of Finite Groups (P Fleischmann and R J Shank)
  • Model Theory (I Tomašić)


Readership: Researchers, graduate or PhD mathematical-science students who require a reference book that covers algebra, logic or combinatorics.
Pure Mathematics;Applied Mathematics;Mathematical Sciences;Techniques;Algebra;Logic;Combinatorics;Fluid Dynamics;Solid Mechanics Key Features:

  • Each chapter is written by a leading lecturer in the field
  • Concise and versatile
  • Can be used as a masters level teaching support or a reference handbook for researchers

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Algebra, Logic and Combinatorics als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Algebra, Logic and Combinatorics von Shaun Bullett, Tom Fearn;Frank Smith im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Matematica & Algebra. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Jahr
2016
ISBN
9781786340320

Chapter 1

Enumerative Combinatorics

Peter J. Cameron
School of Mathematical Sciences,
Queen Mary University of London, London E1 4NS, UK

[email protected]
This chapter presents a very brief introduction to enumerative combinatorics. After a section on formal power series, it discusses examples of counting subsets, partitions and permutations; techniques for solving recurrence relations; the inclusion–exclusion principle; the Möbius function of a poset; q-binomial coefficients; and orbit-counting. A section on the theory of species (introduced by André Joyal) follows. The chapter concludes with a number of exercises, some of which are worked.

1.Introduction

Combinatorics is the science of arrangements. We want to arrange objects according to certain rules, for example, digits in a sudoku grid. We can break the basic question into three parts:
Is an arrangement according to the rules possible?
If so, how many different arrangements are there?
What properties (for example, symmetry) do the arrangements possess?
Enumerative combinatorics provides techniques for answering the second of these questions.
Unlike the case of sudoku, we are usually faced by an infinite sequence of problems indexed by a natural number n. So if an is the number of solutions to the problem with index n, then the solution of the problem is a sequence (a0, a1, . . .) of natural numbers. We combine these into a single object, a formal power series, sometimes called the generating function of the sequence. In the next section, we will briefly sketch the theory of formal power series.
For example, consider the problem:
Problem 1. How many subsets of a set of size n are there?
Of course, the answer is 2n. The generating function is
images
Needless to say, in most cases we cannot expect such a complete answer!
In the remainder of the chapter, we examine some special cases, treating some of the important principles of combinatorics (such as counting up to symmetry and inclusion–exclusion).
An important part of the subject involves finding good asymptotic estimates for the solution; this is especially necessary if there is no simple formula for it. Space does not permit a detailed account of this; see Flajolet and Sedgewick [4] or Odlyzko [10].
The chapter concludes with some suggestions for further reading.
To conclude this section, recall the definition of the binomial coefficients:
images
A familiar problem of elementary combinatorics asks for the number of ways in which k objects can be chosen from a set of n, under various combinations of sampling rules:
images

2.Formal Power Series

2.1.Definition

It is sometimes said that formal power series were the 19th-century analogue of random-access memory.
Suppose that (a0, a1, a2, . . .) is an infinite sequence of numbers. We can wrap up the whole sequence into a single object, the formal power series A(x) in an indeterminate x given by
images
We have not lost any information, since the numbers an can be recovered from the power series:
images
Of course, we will have to think carefully about what is going on here, especially if the power series doesn’t converge, so that we cannot apply the techniques of analysis.
In fact, it is very important that our treatment should not depend on using analytic techniques. We define formal power series and operations on them abstractly, but at the end it is legitimate to think that formulae like the above are valid, and questions of convergence do not enter. So operations on formal power series are not allowed to involve infinite sums, for example; but finite sums are legitimate. The “coefficients” will usually be taken from some number system, but may indeed come from any commutative ring with identity.
Here is a brief survey of how it is done.
A formal power series is defined as simply a sequence (an)n≥0; but keep i...

Inhaltsverzeichnis