Essential Human Development
eBook - ePub

Essential Human Development

Samuel Webster, Geraint Morris, Euan Kevelighan, Samuel Webster, Geraint Morris, Euan Kevelighan

Buch teilen
  1. English
  2. ePUB (handyfreundlich)
  3. Über iOS und Android verfügbar
eBook - ePub

Essential Human Development

Samuel Webster, Geraint Morris, Euan Kevelighan, Samuel Webster, Geraint Morris, Euan Kevelighan

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

As our understanding of the human body broadens, so does the need for a comprehensive text that encompasses all aspects of human development. Essential Human Development is a great course companion that focuses on the human life cycle, ideal for the undergraduate student new to these fields, or for qualified practitioners looking for a reference guide.

Featuring key information points and self-test assessments in each chapter, the book is organised in an accessible manner, beginning with fertilisation and embryology, then moving on to obstetric medicine, neonatal care and child health, with the final section exploring gynaecological medicine.

Ensuring that information is placed in context to aid understanding, Essential Human Development is the perfect support for the modern medical school curriculum, as well as a vital reminder of the core information needed whilst on a women or child health clinical placement.

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Essential Human Development als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Essential Human Development von Samuel Webster, Geraint Morris, Euan Kevelighan, Samuel Webster, Geraint Morris, Euan Kevelighan im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Medicine & Gynecology, Obstetrics & Midwifery. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Jahr
2018
ISBN
9781118528617

Part 1
Fertilisation

Figure in the background of the page depicting a baby inside the womb.

Chapter 1
Principles of Development

Sam Webster

Case

Jamie is a 4-month-old boy presenting with disparity between limb length, trunk length and cranial circumference. His height is under the fourth percentile, his weight is under the fourth percentile and his head circumference is above the 97th percentile. Motor development milestones are delayed. Jamie's mother and father have typical heights (168 cm and 176 cm respectively).

Learning Outcomes

  • You should be able to recognise the stages of cell division in mitosis and meiosis.
  • You should be able to describe the basic principles of growth and differentiation.

Chromosomes

As a basis of biology cell theory is a crucial part of understanding development. Complex organisms grow from a single cell. The cell is the fundamental unit of structure in the organism, and new cells are formed from existing cells. All structure, function and organisation relates to the unit of the cell. In development we consider how the cells of the gametes merge to form a cell with a new genetic composition, the division of that cell to form new cells, and how those cells become organised, form shapes and tissues of multiple differentiated cell types.
DNA is stored in chromatin form within the nuclei of cells, and RNA is present in the cytoplasm. When cells divide the chromosomes are duplicated and the daughter cells gain exact copies of the DNA of the parent cell (hopefully, if the replication and error checking mechanisms work correctly).
Somatic cells contain 23 pairs of chromosomes including 22 pairs of autosomes and one pair of sex chromosomes (Figure 1.1). Each chromosome is an organised package of DNA.
Figure depicting human karyotype, where somatic cells contain 23 pairs of chromosomes including 22 pairs of autosomes and one pair of sex chromosomes.
Figure 1.1 Human karyotype. (Source: S. Webster and R. de Wreede (2016) Embryology at a Glance, 2nd edn. Reproduced with permission of John Wiley & Sons, Ltd.)
In a homologous pair of chromosomes the same genes are encoded on each chromosome but the genes may occur as slightly different versions. One chromosome has been inherited from the father, and the other from the mother. For example, the gene for head hair pigment colour will occur on both chromosomes of a homologous pair, but one copy may encode for blonde hair and the other for brown. These copies are alleles, and the dominant pigment allele will be represented in the phenotype of the individual. This is a simplified example, and many hair pigments are at play in determining a person's final hair colour, accounting for the wide variation of natural shades that occurs. The mixing up of alleles across homologous chromosomes during cell division is an important part of the genetic diversity advantage given by sexual reproduction over asexual reproduction.
If a cell has two copies of each kind of chromosome (e.g. one copy from the mother and one copy from the mother) it is said to be diploid. If it only had one copy it would be haploid.
We can also describe a cell by the number of copies (n) of each unique double-stranded length of chromosomal DNA. Chromosomal DNA inherited from the mother is different to chromosomal DNA inherited from the father. In a pair of chromosomes the genes are the same but the alleles are different. A haploid cell has only one copy of each kind of chromosome so it is described as 1n. Somatic cells are normally diploid, and during part of the cell cycle only have one DNA strand for each kind of chromosome so are described as 2n. They have two copies of each kind of chromosome (one from the mother and one from the father). When a cell copies its DNA in preparation for cell division it will have four copies of each kind of chromosome and be described as 4n.
If the DNA strand of a chromosome is duplicated its two duplicates are joined together at the centromere forming the familiar X shape of most chromosomes (Figure 1.2). Each of the two duplicates is a sister chromatid.
Figure depicting the structure of a chromosome, where chromatid and centromere are labeled.
Figure 1.2 The structure of a chromosome. (Source: S. Webster and R. de Wreede (2016) Embryology at a Glance, 2nd edn. Reproduced with permission of John Wiley & Sons, Ltd.)

Mitosis

Mitosis is the process by which cells divide and increase in number in eukaryotic organisms. The result of mitosis is two daughter cells that contain the same genetic information. Mitosis is the method by which cells repair tissues, it is one way in which growth can occur, and it is how cells lost through normal processes are replaced. Some cells are very good at proliferating by mitosis, such as epidermal keratinocytes, which are lost daily as flakes of skin, and some cells are very poor at mitotic division, such as neurones of the central nervous system, which are expected to survive for the lifetime of the organism (although it is not yet clearly understood how long neurones live, but they are not naturally replaced after brain damage). Mitosis is a major mechanism of growth in the embryo and fetus.
Cell division is a step within the cell cycle (Figure 1.3). The cell cycle describes a series of carefully controlled events in the life of cell that take part in cell division, and cells that do not divide are considered to have left the cell cycle. The stages of the cell cycle are gap 1 (G1), synthesis (S), gap 2 (G2) and mitosis (M). The stages of G1, S and G2 are also known collectively as interphase. A cell's DNA is duplicated during S phase, adding a sister chromatid to the existing chromatid. A cell that no longer divides can be described as existing within a G0 phase.
Figure depicting the cell cycle. The stages of the cell cycle are gap 1 (G1), synthesis (S), gap 2 (G2) and mitosis (M).
Figure 1.3 The cell cycle. (Source: S. Webster and R. de Wreede (2016) Embryology at a Glance, 2nd edn. Reproduced with permission of John Wiley & Sons, Ltd.)
When a cell begins mitosis its chromosomes become condensed and form their recognisable X shapes during the first phase of mitosis, called prophase (Figure 1.4). At this stage it is diploid (4n). Centrioles are cylindrical structures that have a number of functions within eukaryotic cells, and during mitosis they arrange and separate DNA. During prophase the centrioles move to opposite ends of the cell.
Figure 1.4 Mitosis. (Source: S. Webster and R. de Wreede (2016) Embryology at a Glance, 2nd edn. Reproduced with permission of John Wiley & Sons, Ltd.)
In the next stage, prometaphase, the nuclear membrane breaks down and disappears releasing the DNA into the cytoplasm. Microtubules link the centromeres of the chromosomes to the centrioles, and during metaphase the chromosomes begin to move, pulled by the microtubules to line up along the middle of the cell.
The centromeres are cut in the telophase step, splitting each chromosome into its separate, genetically identical chromatids. One of each pair of chromatids is pulled to opposite ends of the cell by microtubules and the centrioles.
In telophase the chromatids reach the ends of the cell, begin to lengthen again and are no longer visible under a light microscope. Two new nuclear membranes begin to form around the chromatid DNA to create two nuclei. Cytokinesis follows during which a ring of actin filaments appears around the midline of the cell and shrinks, splitting the cell into two. Mitosis is complete, and the two cells return to the G1 phase. During the G1 phase each cell has a full, diploid complement of DNA but only one copy of each chromosome (2n).

Meiosis

Meiosis is a specialised method of cell divi...

Inhaltsverzeichnis