Pump Wisdom
eBook - ePub

Pump Wisdom

Essential Centrifugal Pump Knowledge for Operators and Specialists

Robert X. Perez, Heinz P. Bloch

Compartir libro
  1. English
  2. ePUB (apto para móviles)
  3. Disponible en iOS y Android
eBook - ePub

Pump Wisdom

Essential Centrifugal Pump Knowledge for Operators and Specialists

Robert X. Perez, Heinz P. Bloch

Detalles del libro
Vista previa del libro
Índice
Citas

Información del libro

Pump Wisdom

Explore key facets of centrifugal pump ownership, installation, operation, and troubleshooting

The Second Edition of Pump Wisdom: Essential Centrifugal Pump Knowledge for Operators and Specialists delivers a concise explanation of how pumps function, the design specifications that must be considered before purchasing a pump, and current best practices in lubrication and mechanical seals.

Readers will encounter new startup and surveillance tips for pump operators, as well as repair versus replacement or upgrade considerations for maintenance decision makers, new condition monitoring guidance for centrifugal pumps, and expanded coverage of operator best practices.

This latest edition of Pump Wisdom: Essential Centrifugal Pump Knowledge for Operators and Specialists includes expanded coverage of areas critical to achieving best-in-class pump reliability, including commonly encountered issues and easy-to-follow instructions for getting centrifugal pumps to operate safely and reliably.

This book also provides:

  • Comprehensible and accessible explanations of pump hydraulics
  • Simple explorations of the mechanical aspects of pumps with coverage of bearings, seals, impeller trimming, lubricant application, and more
  • Safety tips and instructions for centrifugal pumps

Perfect for chemical, petroleum, and mechanical engineers, Pump Wisdom: Essential Centrifugal Pump Knowledge for Operators and Specialists is also an ideal resource for operators, managers, purchasing agents, machinists, reliability technicians, and maintenance workers in water and wastewater plants.

Preguntas frecuentes

¿Cómo cancelo mi suscripción?
Simplemente, dirígete a la sección ajustes de la cuenta y haz clic en «Cancelar suscripción». Así de sencillo. Después de cancelar tu suscripción, esta permanecerá activa el tiempo restante que hayas pagado. Obtén más información aquí.
¿Cómo descargo los libros?
Por el momento, todos nuestros libros ePub adaptables a dispositivos móviles se pueden descargar a través de la aplicación. La mayor parte de nuestros PDF también se puede descargar y ya estamos trabajando para que el resto también sea descargable. Obtén más información aquí.
¿En qué se diferencian los planes de precios?
Ambos planes te permiten acceder por completo a la biblioteca y a todas las funciones de Perlego. Las únicas diferencias son el precio y el período de suscripción: con el plan anual ahorrarás en torno a un 30 % en comparación con 12 meses de un plan mensual.
¿Qué es Perlego?
Somos un servicio de suscripción de libros de texto en línea que te permite acceder a toda una biblioteca en línea por menos de lo que cuesta un libro al mes. Con más de un millón de libros sobre más de 1000 categorías, ¡tenemos todo lo que necesitas! Obtén más información aquí.
¿Perlego ofrece la función de texto a voz?
Busca el símbolo de lectura en voz alta en tu próximo libro para ver si puedes escucharlo. La herramienta de lectura en voz alta lee el texto en voz alta por ti, resaltando el texto a medida que se lee. Puedes pausarla, acelerarla y ralentizarla. Obtén más información aquí.
¿Es Pump Wisdom un PDF/ePUB en línea?
Sí, puedes acceder a Pump Wisdom de Robert X. Perez, Heinz P. Bloch en formato PDF o ePUB, así como a otros libros populares de Technik & Maschinenbau y Chemie- & Biochemietechnik. Tenemos más de un millón de libros disponibles en nuestro catálogo para que explores.

Información

Editorial
Wiley-AIChE
Año
2021
ISBN
9781119748236

1
Principles of Centrifugal Process Pumps

Pumps, of course, are simple machines that lift, transfer, or otherwise move fluid from one place to another. They are usually configured to use the rotational (kinetic) energy from an impeller to impart motion to a fluid. The impeller is located on a shaft; together, shaft and impeller(s) make up the rotor. This rotor is surrounded by a casing; located in this casing (or pump case) are one or more stationary passageways that direct the fluid to a discharge nozzle. Impeller and casing are the main components of the hydraulic assembly; the region or envelope containing bearings and seals is called the mechanical assembly or power end (Figure 1.1).
Many process pumps are designed and constructed to facilitate field repair. On these so‐called “back pull‐out” pumps, shop maintenance can be performed, while the casing and its associated suction and discharge piping (Figure 1.2) are left undisturbed. Although operating in the hydraulic end, the impeller remains with the power end during removal from the field.
The rotating impeller (Figure 1.3) is usually constructed with swept‐back vanes, and the fluid is accelerated from the rotating impeller to the stationary passages into the surrounding casing.
In this manner, kinetic energy is added to the fluid stream (also called pumpage) as it enters the impeller's suction eye (A on Figure 1.3), travels through the impeller, and is then flung outward toward the impeller's periphery. After the fluid exits the impeller, it gradually decelerates to a much lower velocity in the stationary casing, called a volute casing, where the fluid stream's kinetic energy is converted into pressure energy (also called pressure head). The combination of the pump suction (inlet) pressure and the additional pressure head generated by the impeller creates a final pump discharge pressure that is higher than the suction pressure [3].
Schematic illustration of principal components of an elementary process pump.
Figure 1.1 Principal components of an elementary process pump.
Source: SKF USA, Inc. [1].

Pump Performance: Head and Flow

Pump performance is always described in terms of head H produced at a given flow capability Q, and hydraulic efficiency η attained at any particular intersection of H and Q. Head is customarily plotted on the vertical scale or vertical axis (the left of the two y‐axes) of Figure 1.4; it is expressed in feet (or meters). Hydraulic efficiency is often plotted on another vertical scale, the right of the two vertical scales, i.e. the y‐axis in this generalized plot.
Schematic illustration of typical process pump with suction flow entering horizontally and vertically oriented discharge pipe leaving the casing tangentially.
Figure 1.2 Typical process pump with suction flow entering horizontally and vertically oriented discharge pipe leaving the casing tangentially.
Source: Emile Egger & Cie. [2].
Head is related to the difference between discharge pressure and suction pressure at the respective pump nozzles. Head is a simple concept, but this is where consideration of the impeller tip speed is important. The higher the shaft rpm and the larger the impeller diameter, the higher will be the impeller tip speed – actually its peripheral velocity.
Schematic illustration of a semiopen impeller with five vanes.
Figure 1.3 A semiopen impeller with five vanes. As shown, the impeller is configured for counterclockwise rotation about a centerline “A.”
Schematic illustration of typical H–Q performance curves are sloped as shown here.
Figure 1.4 Typical “HQ” performance curves are sloped as shown here. The best efficiency point (BEP) is marked with a small triangle; power and other parameters are often displayed on the same plot.
The concept of head can be visualized by thinking of a vertical pipe bolted to the outlet (the discharge nozzle) of a pump. In this imaginary pipe, a column of fluid would rise to a height “H”. If the vertical pipe would be attached to the discharge nozzle of a pump with higher impeller tip speed, the fluid would rise to a greater height “H+”. It is important to note that the height of a column of liquid, H or H+, is a function only of the impeller tip speed. The specific gravity of the liquid affects power demand but does not influence either H or H+. However, the resulting discharge pressure does depend on the liquid density (specific gravity or Sp.G.). For water (with an Sp.G. of 1.0), an H of 2.31 ft equals 1 psi (pound‐per‐square‐inch), while for alcohol, which might have a Sp.G. of 0.5, a column height or head H of 4.62 ft equals 1 psi. So if a certain fluid had an Sp.G. of 1.28, a column height (head H) of 2.31/1.28 = 1.8 ft would equal a pressure of 1 psi.
For reasons of material strength and reasonably priced metallurgy, one usually limits the head per stage to about 700 ft. This is a fairly important rule‐of‐thumb limit to remember. When too many similar rule‐of‐thumb limits combine, one...

Índice