Oscillations in Nonlinear Systems
eBook - ePub

Oscillations in Nonlinear Systems

Jack K. Hale

Partager le livre
  1. 192 pages
  2. English
  3. ePUB (adapté aux mobiles)
  4. Disponible sur iOS et Android
eBook - ePub

Oscillations in Nonlinear Systems

Jack K. Hale

DĂ©tails du livre
Aperçu du livre
Table des matiĂšres
Citations

À propos de ce livre

By focusing on ordinary differential equations that contain a small parameter, this concise graduate-level introduction to the theory of nonlinear oscillations provides a unified approach to obtaining periodic solutions to nonautonomous and autonomous differential equations. It also indicates key relationships with other related procedures and probes the consequences of the methods of averaging and integral manifolds.
Part I of the text features introductory material, including discussions of matrices, linear systems of differential equations, and stability of solutions of nonlinear systems. Part II offers extensive treatment of periodic solutions, including the general theory for periodic solutions based on the work of Cesari-Halel-Gambill, with specific examples and applications of the theory. Part III covers various aspects of almost periodic solutions, including methods of averaging and the existence of integral manifolds. An indispensable resource for engineers and mathematicians with knowledge of elementary differential equations and matrices, this text is illuminated by numerous clear examples.

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans paramĂštres et de cliquer sur « RĂ©silier l’abonnement ». C’est aussi simple que cela ! Une fois que vous aurez rĂ©siliĂ© votre abonnement, il restera actif pour le reste de la pĂ©riode pour laquelle vous avez payĂ©. DĂ©couvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptĂ©s aux mobiles peuvent ĂȘtre tĂ©lĂ©chargĂ©s via l’application. La plupart de nos PDF sont Ă©galement disponibles en tĂ©lĂ©chargement et les autres seront tĂ©lĂ©chargeables trĂšs prochainement. DĂ©couvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accĂšs complet Ă  la bibliothĂšque et Ă  toutes les fonctionnalitĂ©s de Perlego. Les seules diffĂ©rences sont les tarifs ainsi que la pĂ©riode d’abonnement : avec l’abonnement annuel, vous Ă©conomiserez environ 30 % par rapport Ă  12 mois d’abonnement mensuel.
Qu’est-ce que Perlego ?
Nous sommes un service d’abonnement Ă  des ouvrages universitaires en ligne, oĂč vous pouvez accĂ©der Ă  toute une bibliothĂšque pour un prix infĂ©rieur Ă  celui d’un seul livre par mois. Avec plus d’un million de livres sur plus de 1 000 sujets, nous avons ce qu’il vous faut ! DĂ©couvrez-en plus ici.
Prenez-vous en charge la synthÚse vocale ?
Recherchez le symbole Écouter sur votre prochain livre pour voir si vous pouvez l’écouter. L’outil Écouter lit le texte Ă  haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l’accĂ©lĂ©rer ou le ralentir. DĂ©couvrez-en plus ici.
Est-ce que Oscillations in Nonlinear Systems est un PDF/ePUB en ligne ?
Oui, vous pouvez accĂ©der Ă  Oscillations in Nonlinear Systems par Jack K. Hale en format PDF et/ou ePUB ainsi qu’à d’autres livres populaires dans Mathematics et Differential Equations. Nous disposons de plus d’un million d’ouvrages Ă  dĂ©couvrir dans notre catalogue.

Informations

Année
2015
ISBN
9780486803265
Part I
Introduction and Background Material
1: Introduction
Most physical systems are nonlinear. We shall assume the evolution of the physical system is governed by a real ordinary differential equation; that is, the state x(t) = (x1(t), x2(t), . . . , xn(t)) of the physical system at time t is a point along the solution of the differential system
which passes through the point
, at time t = t0.
In general, the functions fi are nonlinear functions of the state variables x1, x2, . . . , xn. For the sake of simplicity in analyzing (1-1), the functions fi are frequently replaced by linear functions. In many cases this is sufficient, but there are phenomena which cannot be explained by analysis of the linear approximation.
The purpose of the present book is to concentrate on some aspects of differential equations which depend very strongly upon the fact that (1-1) is nonlinear.
The basic quality of a linear system (1-1) is (1) the sum of any two solutions of (1-1) is also a solution (the principle of superposition) and (2) any constant multiple of a solution of (1-1) is also a solution. Consequently, knowing the behavior of the solutions of (1-1) in a small neighborhood of the origin, x1 = x2 = · · · = xn = 0, implies one knows the behavior of the solutions everywhere in the state space; that is, globally. Furthermore, if one has a periodic solution of a linear system (1-1), then it cannot be isolated since any constant multiple of a solution is also a solution.
In nonlinear systems none of the above properties need be true. In fact, there is no principle of superposition, the behavior of solutions is generally only a local property, and there may be isolated periodic solutions (except for a phase shift). A simple example illustrating the local property of the behavior of solutions is
whose solutions are shown in Fig. 1-1.
The most classical example of a system which has an isolated periodic solution (except for a shift in phase) is the van der Pol equation
whose trajectories in the
plane are shown in Fig. 1-2. The closed curve C has the property that all other trajectories approach it as t → ∞ except, of course, the trajectory which passes through the equilibrium point
. This is a phenomenon which is due to the nonlinear structure of the system and could never be explained by a linear analysis. Such an oscillation is called self-excited.
Fig. 1-1
Fig. 1-2
Another interesting phenomenon that may occur in nonlinear systems is the following: Suppose system (1-1) is linear and apply a periodic forcing function of period T to (1-1). If the unforced system has no periodic solution, then there can never be an isolated periodic solution of any period except T. In nonlinear systems, this is not the case and isolated periodic solutions of period mT, where m i...

Table des matiĂšres