Information Theory
eBook - ePub

Information Theory

Robert B. Ash

Partager le livre
  1. 368 pages
  2. English
  3. ePUB (adapté aux mobiles)
  4. Disponible sur iOS et Android
eBook - ePub

Information Theory

Robert B. Ash

DĂ©tails du livre
Aperçu du livre
Table des matiĂšres
Citations

À propos de ce livre

Developed by Claude Shannon and Norbert Wiener in the late 1940s, information theory, or statistical communication theory, deals with the theoretical underpinnings of a wide range of communication devices: radio, television, radar, computers, telegraphy, and more. This book is an excellent introduction to the mathematics underlying the theory.
Designed for upper-level undergraduates and first-year graduate students, the book treats three major areas: analysis of channel models and proof of coding theorems (chapters 3, 7, and 8); study of specific coding systems (chapters 2, 4, and 5); and study of statistical properties of information sources (chapter 6). Among the topics covered are noiseless coding, the discrete memoryless channel, effort correcting codes, information sources, channels with memory, and continuous channels.
The author has tried to keep the prerequisites to a minimum. However, students should have a knowledge of basic probability theory. Some measure and Hilbert space theory is helpful as well for the last two sections of chapter 8, which treat time-continuous channels. An appendix summarizes the Hilbert space background and the results from the theory of stochastic processes necessary for these sections. The appendix is not self-contained but will serve to pinpoint some of the specific equipment needed for the analysis of time-continuous channels.
In addition to historic notes at the end of each chapter indicating the origin of some of the results, the author has also included 60 problems with detailed solutions, making the book especially valuable for independent study.

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans paramĂštres et de cliquer sur « RĂ©silier l’abonnement ». C’est aussi simple que cela ! Une fois que vous aurez rĂ©siliĂ© votre abonnement, il restera actif pour le reste de la pĂ©riode pour laquelle vous avez payĂ©. DĂ©couvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptĂ©s aux mobiles peuvent ĂȘtre tĂ©lĂ©chargĂ©s via l’application. La plupart de nos PDF sont Ă©galement disponibles en tĂ©lĂ©chargement et les autres seront tĂ©lĂ©chargeables trĂšs prochainement. DĂ©couvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accĂšs complet Ă  la bibliothĂšque et Ă  toutes les fonctionnalitĂ©s de Perlego. Les seules diffĂ©rences sont les tarifs ainsi que la pĂ©riode d’abonnement : avec l’abonnement annuel, vous Ă©conomiserez environ 30 % par rapport Ă  12 mois d’abonnement mensuel.
Qu’est-ce que Perlego ?
Nous sommes un service d’abonnement Ă  des ouvrages universitaires en ligne, oĂč vous pouvez accĂ©der Ă  toute une bibliothĂšque pour un prix infĂ©rieur Ă  celui d’un seul livre par mois. Avec plus d’un million de livres sur plus de 1 000 sujets, nous avons ce qu’il vous faut ! DĂ©couvrez-en plus ici.
Prenez-vous en charge la synthÚse vocale ?
Recherchez le symbole Écouter sur votre prochain livre pour voir si vous pouvez l’écouter. L’outil Écouter lit le texte Ă  haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l’accĂ©lĂ©rer ou le ralentir. DĂ©couvrez-en plus ici.
Est-ce que Information Theory est un PDF/ePUB en ligne ?
Oui, vous pouvez accĂ©der Ă  Information Theory par Robert B. Ash en format PDF et/ou ePUB ainsi qu’à d’autres livres populaires dans Technology & Engineering et Electrical Engineering & Telecommunications. Nous disposons de plus d’un million d’ouvrages Ă  dĂ©couvrir dans notre catalogue.

Informations

CHAPTER ONE

A Measure of Information

1.1. Introduction

Information theory is concerned with the analysis of an entity called a “communication system,” which has traditionally been represented by the block diagram shown in Fig. 1.1.1. The source of messages is the person or machine that produces the information to be communicated. The encoder associates with each message an “object” which is suitable for transmission over the channel. The “object” could be a sequence of binary digits, as in digital computer applications, or a continuous waveform, as in radio communication. The channel is the medium over which the coded message is transmitted. The decoder operates on the output of the channel and attempts to extract the original message for delivery to the destination. In general, this cannot be done with complete reliability because of the effect of “noise,” which is a general term for anything which tends to produce errors in transmission.
Information theory is an attempt to construct a mathematical model for each of the blocks of Fig. 1.1.1. We shall not arrive at design formulas for a communication system; nevertheless, we shall go into considerable detail concerning the theory of the encoding and decoding operations.
It is possible to make a case for the statement that information theory is essentially the study of one theorem, the so-called “fundamental theorem of information theory,” which states that “it is possible to transmit information through a noisy channel at any rate less than channel capacity with an arbitrarily small probability of error.” The meaning of the various terms “information,” “channel,” “noisy,” “rate,” and “capacity” will be clarified in later chapters. At this point, we shall only try to give an intuitive idea of the content of the fundamental theorem. Imagine a “source of information” that produces a sequence of binary digits (zeros or ones) at the rate of 1 digit per second. Suppose that the digits 0 and 1 are equally likely to occur and that the digits are produced independently, so that the distribution of a given digit is unaffected by all previous digits. Suppose that the digits are to be communicated directly over a “channel.” The nature of the channel is unimportant at this moment, except that we specify that the probability that a particular digit is received in error is (say) 1/4, and that the channel acts on successive inputs independently. We also assume that digits can be transmitted through the channel at a rate not to exceed 1 digit per second. The pertinent information is summarized in Fig. 1.1.2.
image
Fig. 1.1.1. Communication system.
image
Fig. 1.1.2. Example.
Now a probability of error of 1/4 may be far too high in a given application, and we would naturally look for ways of improving reliability. One way that might come to mind involves sending the source digit through the channel more than once. For example, if the source...

Table des matiĂšres