An Introduction to Compressible Flow
eBook - ePub

An Introduction to Compressible Flow

Forrest E. Ames

Partager le livre
  1. 184 pages
  2. English
  3. ePUB (adapté aux mobiles)
  4. Disponible sur iOS et Android
eBook - ePub

An Introduction to Compressible Flow

Forrest E. Ames

DĂ©tails du livre
Aperçu du livre
Table des matiĂšres
Citations

À propos de ce livre

An Introduction to Compressible Flow is a concise, yet comprehensive treatment of one-dimensional compressible flow designed to provide mechanical and aerospace engineering students with the background they need for aerodynamics and turbomachinery courses. This book covers isentropic flow, normal shock waves, oblique shock waves, and Prandtl Meyer flow and their applications. The first chapter reviews the physics of air, control volume analysis and provides a review of thermodynamics. Most textbooks provide very concise treatments of compressible flow-this text will supplement that material, which is often too concise to provide students with the background they need. This book also supports practicing engineers who have never developed a mastery of issues related to one-dimensional compressible flow or who need to review this material at some point in their careers. The appendices provide the tables and charts commonly associated with this material. One new addition is an oblique shock table, which tabulates the oblique shock angle for the weak shock solution as a function of Mach number and deflection angle. The book includes examples of problem solutions, and each chapter has a list of problems to enable students to apply their understanding.

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans paramĂštres et de cliquer sur « RĂ©silier l’abonnement ». C’est aussi simple que cela ! Une fois que vous aurez rĂ©siliĂ© votre abonnement, il restera actif pour le reste de la pĂ©riode pour laquelle vous avez payĂ©. DĂ©couvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptĂ©s aux mobiles peuvent ĂȘtre tĂ©lĂ©chargĂ©s via l’application. La plupart de nos PDF sont Ă©galement disponibles en tĂ©lĂ©chargement et les autres seront tĂ©lĂ©chargeables trĂšs prochainement. DĂ©couvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accĂšs complet Ă  la bibliothĂšque et Ă  toutes les fonctionnalitĂ©s de Perlego. Les seules diffĂ©rences sont les tarifs ainsi que la pĂ©riode d’abonnement : avec l’abonnement annuel, vous Ă©conomiserez environ 30 % par rapport Ă  12 mois d’abonnement mensuel.
Qu’est-ce que Perlego ?
Nous sommes un service d’abonnement Ă  des ouvrages universitaires en ligne, oĂč vous pouvez accĂ©der Ă  toute une bibliothĂšque pour un prix infĂ©rieur Ă  celui d’un seul livre par mois. Avec plus d’un million de livres sur plus de 1 000 sujets, nous avons ce qu’il vous faut ! DĂ©couvrez-en plus ici.
Prenez-vous en charge la synthÚse vocale ?
Recherchez le symbole Écouter sur votre prochain livre pour voir si vous pouvez l’écouter. L’outil Écouter lit le texte Ă  haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l’accĂ©lĂ©rer ou le ralentir. DĂ©couvrez-en plus ici.
Est-ce que An Introduction to Compressible Flow est un PDF/ePUB en ligne ?
Oui, vous pouvez accĂ©der Ă  An Introduction to Compressible Flow par Forrest E. Ames en format PDF et/ou ePUB ainsi qu’à d’autres livres populaires dans Ciencias fĂ­sicas et MecĂĄnica de fluidos. Nous disposons de plus d’un million d’ouvrages Ă  dĂ©couvrir dans notre catalogue.

Informations

Éditeur
Momentum Press
Année
2018
ISBN
9781947083257
CHAPTER 1
INTRODUCTION
1.1 BACKGROUND INFORMATION ON GASES
1.1.1 AIR COMPOSITION AND AIR MOLECULES
Air is often described in terms of its properties, including its density, temperature, and pressure. A typical density given for air is about 1.2 kg/m3, which is almost exact for 21°C at 1 atmosphere. Consequently, the mass of the air in 1 m3 of volume is about 1.2 kilograms. From chemistry, we know that one kilogram mole (kmol) of any substance has 6.02252 × 1026 molecules. The typical composition for dry air is given as 78.08 percent nitrogen (N2), 20.95 percent oxygen (O2), 0.93 percent argon (Ar), and about 0.04 percent carbon dioxide (CO2). If the percentages are multiplied by the individual molecular weights of these main four constituents, air is found to have a composite molecular weight of 28.97 kg/kmol. Consequently, 1 m3 of volume will typically contain nearly 2.5 × 1025 molecules of air, which is a nearly incomprehensible number. The root mean square of the speed of these molecules is around 503 m/s, and the average distance they travel before bumping into another molecule (the mean free path, λ) is about 66 nm. This means an average air molecule at 1 atmosphere and 21°C experiences about 7.6 billion collisions a second.
1.1.2 TEMPERATURE AND GASES
Air is largely made up of diatomic molecules, molecules with two atoms. These air molecules can store energy through their kinetic energy of motion, but also through rotational energies in two axes. The combination of kinetic energy through velocity or translation plus this energy of rotation is often called the internal energy of the gas. Generally, each of the directions of translation and each axis of rotation can store equal amounts of energy. This equivalence between energies of the three directions of translation and the two independent directions of rotation is called the equipartition of energy. About 0.93 percent of air is Argon a monotonic gas. The internal energy of this monotonic gas molecule is related to one-half the mean squared speed of the molecules
image
times the mass, m, of the given molecule. In fact, the mean energy of translation for all the molecules in the gas can be quantified in a similar manner.
image
The energy of translation can also be estimated based on its temperature.
image
Here, T is the absolute temperature and k is the Boltzman constant (k = 1.38054×10-23 J/molecule/K, note this term is only used in Chapter 1), which is essentially the gas constant per molecule. Consequently, absolute temperature is related directly to the mean squared speed of the molecules. This relationship can be put into more familiar terms by multiplying the right-hand side of both equations by Avogadro’s number,
image
. The new equality becomes:
image
Here,
image
is the (composite) molecular weight of the gas, and
image
is the universal gas constant (8314.46 J/kmol/K). The square root of the mean squared speed of the molecules can be determined using equation (3) yielding:
image
From this relationship, it is apparent that both the square root of the mean squared speed of a molecular species or a composite gas like air is related to the molecular weight. At 21°C (294.15 K), using the composite molecular weight of air (28.97 kg/kmol), the composite velocity is determined to be around 503 m/s. Nitrogen, which is slightly lighter, will have a slightly higher speed on average, while oxygen and the other molecules in air, which are heavier, will move at slightly lower average speeds.
Later, the speed of sound of air will be derived from a macroscopic approach. This analysis will show that the speed of sound of air is directly related to the absolute temperature of air similar to the square root of the mean squared speed of a molecule. Note that the square root of the mean squared speed of a molecule is slightly different than the average or mean speed of molecular motion. However, this speed in equation (1.4) can be determined easily from energy concepts related to molecular motion. In general, in thinking about molecular motion, realize that molecular speeds have a random distribution, which is described mathematically by the famous Maxwellian distribution. It turns out that the root mean square speed (equation 1.4) is slightly higher than the average speed, which is slightly higher than the most probable speed. At a given total temperature, the maximum bulk velocity that a gas can achieve from expansion can be determined from energy concepts. Basically, if all the energy stored in a gas is applied to its expansion to maximize the bulk velocity, for a given total temperature for a gas, the maximum velocity will be:
image
This equation means that all of the random and organized energy in the gas, including translational and rotational energies and flow work, is converted into kinetic energy. Here, the CP is the specific heat at constant pressure per mass for the composite gas (J/kg/K) and T is the absolute temperature (K).
1.1.3 PRESSURE AND GASES
The concept of pressure can be related to the force that a gas exerts on a surface in a volume. A simple thought experiment would be to think of a gas as consisting of a very large number of molecules. However, instead of considering the huge number of collisions, which occur within a gas in a volume, let us think of a gas molecule as a point in space that has mass and velocity, but that takes up such a small volume that collisions do not need to b...

Table des matiĂšres