Quantum Machine Learning
eBook - ePub

Quantum Machine Learning

What Quantum Computing Means to Data Mining

Peter Wittek

Condividi libro
  1. 176 pagine
  2. English
  3. ePUB (disponibile sull'app)
  4. Disponibile su iOS e Android
eBook - ePub

Quantum Machine Learning

What Quantum Computing Means to Data Mining

Peter Wittek

Dettagli del libro
Anteprima del libro
Indice dei contenuti
Citazioni

Informazioni sul libro

Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. Theoretical advances in quantum computing are hard to follow for computer scientists, and sometimes even for researchers involved in the field. The lack of a step-by-step guide hampers the broader understanding of this emergent interdisciplinary body of research.

Quantum Machine Learning sets the scene for a deeper understanding of the subject for readers of different backgrounds. The author has carefully constructed a clear comparison of classical learning algorithms and their quantum counterparts, thus making differences in computational complexity and learning performance apparent. This book synthesizes of a broad array of research into a manageable and concise presentation, with practical examples and applications.

  • Bridges the gap between abstract developments in quantum computing with the applied research on machine learning
  • Provides the theoretical minimum of machine learning, quantum mechanics, and quantum computing
  • Gives step-by-step guidance to a broader understanding of this emergent interdisciplinary body of research

Domande frequenti

Come faccio ad annullare l'abbonamento?
È semplicissimo: basta accedere alla sezione Account nelle Impostazioni e cliccare su "Annulla abbonamento". Dopo la cancellazione, l'abbonamento rimarrà attivo per il periodo rimanente già pagato. Per maggiori informazioni, clicca qui
È possibile scaricare libri? Se sì, come?
Al momento è possibile scaricare tramite l'app tutti i nostri libri ePub mobile-friendly. Anche la maggior parte dei nostri PDF è scaricabile e stiamo lavorando per rendere disponibile quanto prima il download di tutti gli altri file. Per maggiori informazioni, clicca qui
Che differenza c'è tra i piani?
Entrambi i piani ti danno accesso illimitato alla libreria e a tutte le funzionalità di Perlego. Le uniche differenze sono il prezzo e il periodo di abbonamento: con il piano annuale risparmierai circa il 30% rispetto a 12 rate con quello mensile.
Cos'è Perlego?
Perlego è un servizio di abbonamento a testi accademici, che ti permette di accedere a un'intera libreria online a un prezzo inferiore rispetto a quello che pagheresti per acquistare un singolo libro al mese. Con oltre 1 milione di testi suddivisi in più di 1.000 categorie, troverai sicuramente ciò che fa per te! Per maggiori informazioni, clicca qui.
Perlego supporta la sintesi vocale?
Cerca l'icona Sintesi vocale nel prossimo libro che leggerai per verificare se è possibile riprodurre l'audio. Questo strumento permette di leggere il testo a voce alta, evidenziandolo man mano che la lettura procede. Puoi aumentare o diminuire la velocità della sintesi vocale, oppure sospendere la riproduzione. Per maggiori informazioni, clicca qui.
Quantum Machine Learning è disponibile online in formato PDF/ePub?
Sì, puoi accedere a Quantum Machine Learning di Peter Wittek in formato PDF e/o ePub, così come ad altri libri molto apprezzati nelle sezioni relative a Physical Sciences e Quantum Theory. Scopri oltre 1 milione di libri disponibili nel nostro catalogo.

Informazioni

Anno
2014
ISBN
9780128010990
Part One
Fundamental Concepts
1

Introduction

Abstract

Why should we look at quantum computing in machine learning? Apart from a speedup and increased storage capacity, quantum computing has further benefits for machine learning algorithms. Learning models lie at the core of data mining, a complex process of extracting meaningful information from large volumes of data. We expect a machine learning model to generalize well beyond a limited training collection. On classical computers, we are constrained by convexity conditions or heuristics to keep computational time under control. Quantum computers do not suffer from these issues in optimization problems; hence, we can achieve better generalization performance. Classical computers excel at other tasks; hence, a heterogeneous model is likely to prevail. Dozens of approaches have already been published on quantum machine learning—we briefly overview the major ones. We further mention classical algorithms that borrow metaphors from quantum mechanics; this is also a prolific area of research.
Keywords
Quantum computing
Machine learning
Data mining
Optimization
Convexity
Nonconvex problems
Quantum speedup
The quest of machine learning is ambitious: the discipline seeks to understand what learning is, and studies how algorithms approximate learning. Quantum machine learning takes these ambitions a step further: quantum computing enrolls the help of nature at a subatomic level to aid the learning process.
Machine learning is based on minimizing a constrained multivariate function, and these algorithms are at the core of data mining and data visualization techniques. The result of the optimization is a decision function that maps input points to output points. While this view on machine learning is simplistic, and exceptions are countless, some form of optimization is always central to learning theory.
The idea of using quantum mechanics for computations stems from simulating such systems. Feynman (1982) noted that simulating quantum systems on classical computers becomes unfeasible as soon as the system size increases, whereas quantum particles would not suffer from similar constraints. Deutsch (1985) generalized the idea. He noted that quantum computers are universal Turing machines, and that quantum parallelism implies that certain probabilistic tasks can be performed faster than by any classical means.
Today, quantum information has three main specializations: quantum computing, quantum information theory, and quantum cryptography (Fuchs, 2002, p. 49). We are not concerned with quantum cryptography, which primarily deals with secure exchange of information. Quantum information theory studies the storage and transmission of information encoded in quantum states; we rely on some concepts such as quantum channels and quantum process tomography. Our primary focus, however, is quantum computing, the field of inquiry that uses quantum phenomena such as superposition, entanglement, and interference to operate on data represented by quantum states.
Algorithms of importance emerged a decade after the first proposals of quantum computing appeared. Shor (1997) introduced a method to factorize integers exponentially faster, and Grover (1996) presented an algorithm to find an element ...

Indice dei contenuti