Quantum Machine Learning
eBook - ePub

Quantum Machine Learning

What Quantum Computing Means to Data Mining

Peter Wittek

Buch teilen
  1. 176 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Quantum Machine Learning

What Quantum Computing Means to Data Mining

Peter Wittek

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. Theoretical advances in quantum computing are hard to follow for computer scientists, and sometimes even for researchers involved in the field. The lack of a step-by-step guide hampers the broader understanding of this emergent interdisciplinary body of research.

Quantum Machine Learning sets the scene for a deeper understanding of the subject for readers of different backgrounds. The author has carefully constructed a clear comparison of classical learning algorithms and their quantum counterparts, thus making differences in computational complexity and learning performance apparent. This book synthesizes of a broad array of research into a manageable and concise presentation, with practical examples and applications.

  • Bridges the gap between abstract developments in quantum computing with the applied research on machine learning
  • Provides the theoretical minimum of machine learning, quantum mechanics, and quantum computing
  • Gives step-by-step guidance to a broader understanding of this emergent interdisciplinary body of research

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Quantum Machine Learning als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Quantum Machine Learning von Peter Wittek im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Physical Sciences & Quantum Theory. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Jahr
2014
ISBN
9780128010990
Part One
Fundamental Concepts
1

Introduction

Abstract

Why should we look at quantum computing in machine learning? Apart from a speedup and increased storage capacity, quantum computing has further benefits for machine learning algorithms. Learning models lie at the core of data mining, a complex process of extracting meaningful information from large volumes of data. We expect a machine learning model to generalize well beyond a limited training collection. On classical computers, we are constrained by convexity conditions or heuristics to keep computational time under control. Quantum computers do not suffer from these issues in optimization problems; hence, we can achieve better generalization performance. Classical computers excel at other tasks; hence, a heterogeneous model is likely to prevail. Dozens of approaches have already been published on quantum machine learning—we briefly overview the major ones. We further mention classical algorithms that borrow metaphors from quantum mechanics; this is also a prolific area of research.
Keywords
Quantum computing
Machine learning
Data mining
Optimization
Convexity
Nonconvex problems
Quantum speedup
The quest of machine learning is ambitious: the discipline seeks to understand what learning is, and studies how algorithms approximate learning. Quantum machine learning takes these ambitions a step further: quantum computing enrolls the help of nature at a subatomic level to aid the learning process.
Machine learning is based on minimizing a constrained multivariate function, and these algorithms are at the core of data mining and data visualization techniques. The result of the optimization is a decision function that maps input points to output points. While this view on machine learning is simplistic, and exceptions are countless, some form of optimization is always central to learning theory.
The idea of using quantum mechanics for computations stems from simulating such systems. Feynman (1982) noted that simulating quantum systems on classical computers becomes unfeasible as soon as the system size increases, whereas quantum particles would not suffer from similar constraints. Deutsch (1985) generalized the idea. He noted that quantum computers are universal Turing machines, and that quantum parallelism implies that certain probabilistic tasks can be performed faster than by any classical means.
Today, quantum information has three main specializations: quantum computing, quantum information theory, and quantum cryptography (Fuchs, 2002, p. 49). We are not concerned with quantum cryptography, which primarily deals with secure exchange of information. Quantum information theory studies the storage and transmission of information encoded in quantum states; we rely on some concepts such as quantum channels and quantum process tomography. Our primary focus, however, is quantum computing, the field of inquiry that uses quantum phenomena such as superposition, entanglement, and interference to operate on data represented by quantum states.
Algorithms of importance emerged a decade after the first proposals of quantum computing appeared. Shor (1997) introduced a method to factorize integers exponentially faster, and Grover (1996) presented an algorithm to find an element ...

Inhaltsverzeichnis