Quantum Machine Learning
eBook - ePub

Quantum Machine Learning

What Quantum Computing Means to Data Mining

Peter Wittek

Partager le livre
  1. 176 pages
  2. English
  3. ePUB (adapté aux mobiles)
  4. Disponible sur iOS et Android
eBook - ePub

Quantum Machine Learning

What Quantum Computing Means to Data Mining

Peter Wittek

DĂ©tails du livre
Aperçu du livre
Table des matiĂšres
Citations

À propos de ce livre

Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. Theoretical advances in quantum computing are hard to follow for computer scientists, and sometimes even for researchers involved in the field. The lack of a step-by-step guide hampers the broader understanding of this emergent interdisciplinary body of research.

Quantum Machine Learning sets the scene for a deeper understanding of the subject for readers of different backgrounds. The author has carefully constructed a clear comparison of classical learning algorithms and their quantum counterparts, thus making differences in computational complexity and learning performance apparent. This book synthesizes of a broad array of research into a manageable and concise presentation, with practical examples and applications.

  • Bridges the gap between abstract developments in quantum computing with the applied research on machine learning
  • Provides the theoretical minimum of machine learning, quantum mechanics, and quantum computing
  • Gives step-by-step guidance to a broader understanding of this emergent interdisciplinary body of research

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans paramĂštres et de cliquer sur « RĂ©silier l’abonnement ». C’est aussi simple que cela ! Une fois que vous aurez rĂ©siliĂ© votre abonnement, il restera actif pour le reste de la pĂ©riode pour laquelle vous avez payĂ©. DĂ©couvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptĂ©s aux mobiles peuvent ĂȘtre tĂ©lĂ©chargĂ©s via l’application. La plupart de nos PDF sont Ă©galement disponibles en tĂ©lĂ©chargement et les autres seront tĂ©lĂ©chargeables trĂšs prochainement. DĂ©couvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accĂšs complet Ă  la bibliothĂšque et Ă  toutes les fonctionnalitĂ©s de Perlego. Les seules diffĂ©rences sont les tarifs ainsi que la pĂ©riode d’abonnement : avec l’abonnement annuel, vous Ă©conomiserez environ 30 % par rapport Ă  12 mois d’abonnement mensuel.
Qu’est-ce que Perlego ?
Nous sommes un service d’abonnement Ă  des ouvrages universitaires en ligne, oĂč vous pouvez accĂ©der Ă  toute une bibliothĂšque pour un prix infĂ©rieur Ă  celui d’un seul livre par mois. Avec plus d’un million de livres sur plus de 1 000 sujets, nous avons ce qu’il vous faut ! DĂ©couvrez-en plus ici.
Prenez-vous en charge la synthÚse vocale ?
Recherchez le symbole Écouter sur votre prochain livre pour voir si vous pouvez l’écouter. L’outil Écouter lit le texte Ă  haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l’accĂ©lĂ©rer ou le ralentir. DĂ©couvrez-en plus ici.
Est-ce que Quantum Machine Learning est un PDF/ePUB en ligne ?
Oui, vous pouvez accĂ©der Ă  Quantum Machine Learning par Peter Wittek en format PDF et/ou ePUB ainsi qu’à d’autres livres populaires dans Physical Sciences et Quantum Theory. Nous disposons de plus d’un million d’ouvrages Ă  dĂ©couvrir dans notre catalogue.

Informations

Éditeur
Academic Press
Année
2014
ISBN
9780128010990
Part One
Fundamental Concepts
1

Introduction

Abstract

Why should we look at quantum computing in machine learning? Apart from a speedup and increased storage capacity, quantum computing has further benefits for machine learning algorithms. Learning models lie at the core of data mining, a complex process of extracting meaningful information from large volumes of data. We expect a machine learning model to generalize well beyond a limited training collection. On classical computers, we are constrained by convexity conditions or heuristics to keep computational time under control. Quantum computers do not suffer from these issues in optimization problems; hence, we can achieve better generalization performance. Classical computers excel at other tasks; hence, a heterogeneous model is likely to prevail. Dozens of approaches have already been published on quantum machine learning—we briefly overview the major ones. We further mention classical algorithms that borrow metaphors from quantum mechanics; this is also a prolific area of research.
Keywords
Quantum computing
Machine learning
Data mining
Optimization
Convexity
Nonconvex problems
Quantum speedup
The quest of machine learning is ambitious: the discipline seeks to understand what learning is, and studies how algorithms approximate learning. Quantum machine learning takes these ambitions a step further: quantum computing enrolls the help of nature at a subatomic level to aid the learning process.
Machine learning is based on minimizing a constrained multivariate function, and these algorithms are at the core of data mining and data visualization techniques. The result of the optimization is a decision function that maps input points to output points. While this view on machine learning is simplistic, and exceptions are countless, some form of optimization is always central to learning theory.
The idea of using quantum mechanics for computations stems from simulating such systems. Feynman (1982) noted that simulating quantum systems on classical computers becomes unfeasible as soon as the system size increases, whereas quantum particles would not suffer from similar constraints. Deutsch (1985) generalized the idea. He noted that quantum computers are universal Turing machines, and that quantum parallelism implies that certain probabilistic tasks can be performed faster than by any classical means.
Today, quantum information has three main specializations: quantum computing, quantum information theory, and quantum cryptography (Fuchs, 2002, p. 49). We are not concerned with quantum cryptography, which primarily deals with secure exchange of information. Quantum information theory studies the storage and transmission of information encoded in quantum states; we rely on some concepts such as quantum channels and quantum process tomography. Our primary focus, however, is quantum computing, the field of inquiry that uses quantum phenomena such as superposition, entanglement, and interference to operate on data represented by quantum states.
Algorithms of importance emerged a decade after the first proposals of quantum computing appeared. Shor (1997) introduced a method to factorize integers exponentially faster, and Grover (1996) presented an algorithm to find an element ...

Table des matiĂšres