The Circuit Designer's Companion
eBook - ePub

The Circuit Designer's Companion

Peter Wilson

Condividi libro
  1. 456 pagine
  2. English
  3. ePUB (disponibile sull'app)
  4. Disponibile su iOS e Android
eBook - ePub

The Circuit Designer's Companion

Peter Wilson

Dettagli del libro
Anteprima del libro
Indice dei contenuti
Citazioni

Informazioni sul libro

The Circuit Designers Companion, Third Edition, provides the essential information that every circuit designer needs to produce a working circuit, as well as information on how to make a design that is robust, tolerant to noise and temperature, and able to operate in the system for which it is intended. It looks at best practices, design guidelines, and engineering knowledge gained from years of experience, and includes practical, real-world considerations for components and printed circuit boards (PCBs) as well as their manufacturability, reliability, and cost. Organized into nine chapters, the book begins with a discussion of grounding and wiring of electronic or electrical circuits, when to consider grounding, and the main factors that must be taken into account when designing a new PCB. It then introduces the reader to passive components such as resistors and capacitors, potentiometers and inductors, and crystals and resonators, as well as active components like diodes, thyristors and triacs, bipolar transistors, junction field-effect transistors, metal-oxide-semiconductor field-effect transistors (MOSFETs), and insulated gate bipolar transistors (IGBTs). It also describes high-speed digital circuit design and analog integrated circuits, including operational amplifiers and comparators, and power supplies such as batteries. The final two chapters focus on electromagnetic compatibility and the latest advances in electronics, along with safety considerations in the design of electronic equipment. This book is an invaluable resource for circuit designers and practicing electronics engineers, electronic engineering students, and professors.

  • An invaluable companion for circuit designers and practicing electronics engineers – gives best practices, design guidelines and engineering knowledge gleaned from years of experience
  • Includes practical, real-world considerations for components, PCBs, manufacturability, reliability and cost, enabling engineers to design and troubleshoot faster, cheaper and more effectively
  • Contains new material on design tools and communication devices, high-speed digital circuit design, simulation methods and testing

Domande frequenti

Come faccio ad annullare l'abbonamento?
È semplicissimo: basta accedere alla sezione Account nelle Impostazioni e cliccare su "Annulla abbonamento". Dopo la cancellazione, l'abbonamento rimarrà attivo per il periodo rimanente già pagato. Per maggiori informazioni, clicca qui
È possibile scaricare libri? Se sì, come?
Al momento è possibile scaricare tramite l'app tutti i nostri libri ePub mobile-friendly. Anche la maggior parte dei nostri PDF è scaricabile e stiamo lavorando per rendere disponibile quanto prima il download di tutti gli altri file. Per maggiori informazioni, clicca qui
Che differenza c'è tra i piani?
Entrambi i piani ti danno accesso illimitato alla libreria e a tutte le funzionalità di Perlego. Le uniche differenze sono il prezzo e il periodo di abbonamento: con il piano annuale risparmierai circa il 30% rispetto a 12 rate con quello mensile.
Cos'è Perlego?
Perlego è un servizio di abbonamento a testi accademici, che ti permette di accedere a un'intera libreria online a un prezzo inferiore rispetto a quello che pagheresti per acquistare un singolo libro al mese. Con oltre 1 milione di testi suddivisi in più di 1.000 categorie, troverai sicuramente ciò che fa per te! Per maggiori informazioni, clicca qui.
Perlego supporta la sintesi vocale?
Cerca l'icona Sintesi vocale nel prossimo libro che leggerai per verificare se è possibile riprodurre l'audio. Questo strumento permette di leggere il testo a voce alta, evidenziandolo man mano che la lettura procede. Puoi aumentare o diminuire la velocità della sintesi vocale, oppure sospendere la riproduzione. Per maggiori informazioni, clicca qui.
The Circuit Designer's Companion è disponibile online in formato PDF/ePub?
Sì, puoi accedere a The Circuit Designer's Companion di Peter Wilson in formato PDF e/o ePub, così come ad altri libri molto apprezzati nelle sezioni relative a Technology & Engineering e Electrical Engineering & Telecommunications. Scopri oltre 1 milione di libri disponibili nel nostro catalogo.

Informazioni

Editore
Newnes
Anno
2011
ISBN
9780080971476

Chapter 1

Grounding and wiring

Chapter Outline

1.1 Grounding
When to consider grounding
1.1.1 Grounding within one unit
1.1.2 Chassis ground
1.1.3 The conductivity of aluminum
Other materials
1.1.4 Ground loops
1.1.5 Power supply returns
Varying loads
Power rail feed
Conductor impedance
1.1.6 Input signal ground
Connection to O V elsewhere on the PCB
Connection to O V within the unit
External ground connection
1.1.7 Output signal ground
Avoiding the common impedance
1.1.8 Inter-board interface signals
Partitioning the signal return
1.1.9 Star-point grounding
1.1.10 Ground connections between units
Breaking the ground link
1.1.11 Shielding
Which end to ground for LF shielding
Electrostatic screening
Surface transfer impedance
1.1.12 The safety earth
1.2 Wiring and cables
1.2.1 Wire types
Wire inductance
Equipment wire
Wire-wrap wire
1.2.2 Cable types
1.2.3 Power cables
1.2.4 Data and multicore cables
Data communication cables
Structured data cable
Shielding and microphony
1.2.5 RF cables
1.2.6 Twisted pair
1.2.7 Crosstalk
Digital crosstalk
1.3 Transmission lines
Transmission line effects
Critical lengths for pulses
1.3.1 Characteristic impedance
1.3.2 Time domain
Forward and reflected waves
Ringing
The Bergeron diagram
The uses of mismatching
1.3.3 Frequency domain
Standing wave distribution versus frequency
Impedance transformation
Lossy lines
Understanding the transmission line impedance graphically

1.1 Grounding

A fundamental property of any electronic or electrical circuit is that the voltages present within it are referenced to a common point, conventionally called the ground. This term is derived from electrical engineering practice, when the reference point is often taken to a copper spike literally driven into the ground. This point may also be a connection point for the power to the circuit, and it is then called the 0 V (nought-volt) rail, and ground and 0 V are frequently (and confusingly) synonymous. Then, when we talk about a five-volt supply or a minus-twelve-volt supply or a two-and-a-half-volt reference, each of these are referred to the 0 V rail.
At the same time, ground is not the same as 0 V. A ground wire connects equipment to earth for safety reasons, and does not carry a current in normal operation. However, in this chapter the word “grounding” will be used in its usual sense, to include both safety earths and signal and power return paths.
Perhaps the greatest single cause of problems in electronic circuits is that 0 V and ground are taken for granted. The fact is that in a working circuit there can only ever be one point which is truly at 0 V; the concept of a “0 V rail” is in fact a contradiction in terms. This is because any practical conductor has a finite non-zero resistance and inductance, and Ohm’s law tells us that a current flowing through anything other than a zero impedance will develop a voltage across it. A working circuit will have current flowing through those conductors that are designated as the 0 V rail and therefore, if any one point of the rail is actually at 0 V (say, the power supply connection) the rest of the rail will not be at 0 V. This can be illustrated with the example in Figure 1.1.
image
FIGURE 1.1 Voltages along the 0 V rail
Assume the 0 V conductor has a resistance of 10 mΩ/inch and that points A, B, C and D are each one inch apart. The voltages at points A, B and C referred to D are:
image
image
image
Now, after such a trenchant introduction, you might be tempted to say well, there are millions of electronic circuits in existence, they must all have 0 V rails, they seem to work well enough, so what’s the problem? Most of the time there is no problem. The impedance of the 0 V conductor is in the region of milliohms, the current levels are milliamps, and the resulting few hundred microvolts drop doesn’t offend the circuit at all; 0 V plus 500 μV is close enough to 0 V for nobody to worry.
The difficulty with this answer is that it is then easy to forget about the 0 V rail and assume that it is 0 V under all conditions, and subsequently be surprised when a circuit oscillates or otherwise doesn’t work. Those conditions where trouble is likely to arise are:
• where current flows are measured in amps rather than milli- or microamps;
• where the 0 V conductor impedance is measured in ohms rather than milliohms;
• where the resultant voltage drop, whatever its value, is of a magnitude or in such a configuration as to affect the circuit operation.

When to consider grounding

One of the attributes of a good circuit designer is to know when these conditions need to be carefully considered and when they may be safely ignored. A frequent complication is that you as circuit designer may not be responsible for the circuit’s layout, which is handed over to a layout draughtsman (who may in turn delegate many routing decisions to a software package). Grounding is always sensitive to layout, whether of discrete wiring or of printed circuits, and the designer must have some knowledge of and control over this if the design is not to be compromised.
The trick is always to be sure that you know where ground return currents are flowing, and what their consequences will be; or, if this is too complicated, to make sure that wherever they flow, the consequences will be minimal. Although the above comments are aimed at 0 V and ground connections, because they are the ones most taken for granted, the nature of the problem is universal and applies to any conductor through which current flows. The power supply rail (or rails) is another special case where conductor impedance can create difficulties.

1.1.1 Grounding within one unit

In this context, “unit” can refer to a single circuit board or a group of boards and other wiring connected together within an enclosure such that you can identify a “local” ground point, for instance the point of entry of the mains earth. An example might be as shown in Figure 1.2. Let us say that printed circuit board (PCB) 1 contains input signal conditioning circuitry, PCB2 contains a microprocessor for signal processing and PCB3 contains high-current output drivers, such as for relays and for lamps. You may not place all these functions on separate boards, but the principles are easier to outline and understand if they are considered separately. The power supply unit (PSU) provides a low-voltage supply for the first two boards, and a higher-power supply for the output board. This is a fairly common system layout and Figure 1.2 will serve as a starting point to illustrate good and bad practice.
image
FIGURE 1.2 Typical intra-unit wiring scheme

1.1.2 Chassis ground

First of all, note that connections are only made to the metal chassis or enclosure at one point. All wires that need to come to the chassis are brought to this point, which should be a metal stud dedicated to the purpose. Such connections are the mains safety earth (about which more later), the 0 V power rail, and any possible screening and filtering connections that may be required in the power supply itself, such as an electrostatic screen in t...

Indice dei contenuti