Tensor Analysis on Manifolds
eBook - ePub

Tensor Analysis on Manifolds

  1. 288 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Tensor Analysis on Manifolds

About this book

"This is a first-rate book and deserves to be widely read." — American Mathematical Monthly
Despite its success as a mathematical tool in the general theory of relativity and its adaptability to a wide range of mathematical and physical problems, tensor analysis has always had a rather restricted level of use, with an emphasis on notation and the manipulation of indices. This book is an attempt to broaden this point of view at the stage where the student first encounters the subject. The authors have treated tensor analysis as a continuation of advanced calculus, striking just the right balance between the formal and abstract approaches to the subject.
The material proceeds from the general to the special. An introductory chapter establishes notation and explains various topics in set theory and topology. Chapters 1 and 2 develop tensor analysis in its function-theoretical and algebraic aspects, respectively. The next two chapters take up vector analysis on manifolds and integration theory. In the last two chapters (5 and 6) several important special structures are studied, those in Chapter 6 illustrating how the previous material can be adapted to clarify the ideas of classical mechanics. The text as a whole offers numerous examples and problems.
A student with a background of advanced calculus and elementary differential equation could readily undertake the study of this book. The more mature the reader is in terms of other mathematical knowledge and experience, the more he will learn from this presentation.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Tensor Analysis on Manifolds by Richard L. Bishop,Samuel I. Goldberg in PDF and/or ePUB format, as well as other popular books in Mathematics & Vector Analysis. We have over one million books available in our catalogue for you to explore.

Information

CHAPTER 1
Manifolds
1.1. Definition of a Manifold
A manifold, roughly, is a topological space in which some neighborhood of each point admits a coordinate system, consisting of real coordinate functions on the points of the neighborhood, which determine the position of points and the topology of that neighborhood; that is, the space is locally cartesian. Moreover, the passage from one coordinate system to another is smooth in the overlapping region, so that the meaning of “differentiable” curve, function, or map is consistent when referred to either system. A detailed definition will be given below.
The mathematical models for many physical systems have manifolds as the basic objects of study, upon which further structure may be defined to obtain whatever system is in question. The concept generalizes and includes the special cases of the Cartesian line, plane, space, and the surfaces which are studied in advanced calculus. The theory of these spaces which generalizes to manifolds includes the ideas of differentiable functions, .smooth curves, tangent vectors, and vector fields. However, the notions of distance between points and straight lines (or shortest paths) are not part of the idea of a manifold but arise as consequences of additional structure, which may or may not be assumed and in any case is not unique.
A manifold has a dimension. As a model for a physical system this is the number of degrees of freedom. We limit ourselves to the study of finite-dimensional manifolds.
Some preliminary definitions will facilitate the definition of a manifold. If X is a topological space, a chart at pX is a function μ : URd, where U is an open set containing p and μ is a homeomorphism onto an open subset of Rd. The dimension of the chart μ: URd is d . The coordinate functions of the chart are the real−valued functions on U given by the entries of values of μ; that is, they are the functions xi = ui μ: UR, where ui: RdR are the standard coordinates on Rd. [The ui are defined by ui (a1,…, ad) = ai. The superscripts are not powers, of course, but are merely the customary tensor indexing of coordinates. If powers are needed, extra parentheses may be used, (x)3 instead of x3 for the cube of x , but usually the context will contain enough distinction to make such parentheses unnecessary.] Thus for each qU, µq = (x1q ,…,xdq ), so we shall also write μ = (x1,…, xd). In other terminology we call uuu a coordinate map, U the coordinate neighborhood, and the collection (x 1,.., xd) coordinates or a coordinate system at p .
We shall restrict the symbols “ui” to this usage as standard coordinates on Rd. For R2 and R3 we shall also use x, y, z as coordinates as is customary, except that we shall usually treat them as functions.
A real-valued function f : VR is C (continuous to order ∞) if V is an open set in Rd and f has continuous partial derivatives of all orders and types (mixed and not). A function φ: VRe is a C map if the components ui φ: VR are C, i = 1, …,e.
More generally is Ck, k a nonnegative integer, if all partial derivatives up to and including those of order k exist and are continuous. (C° means merely continuous.) A map φ is analytic if ui φ are real-analytic, that is, may be expressed in a neighborhood of each point by means of a convergent power series in cartesian coordinates having their origin at the point. Analytic maps are C but not conversely.
Problem 1.1.1. (a) Define f : RR by
image
.
Show that f is C and that all the derivatives of f at 0 vanish; that is, f(k)0 = 0 for every k.
(b) If g : RR is analytic in a neighborhood of 0, then...

Table of contents

  1. Cover
  2. Title Page
  3. Copyright Page
  4. Preface
  5. Contents
  6. Chapter 0 Set Theory and Topology
  7. Chapter 1 Manifolds
  8. Chapter 2 Tensor Algebra
  9. Chapter 3 Vector Analysis on Manifolds
  10. Chapter 4 Integration Theory
  11. Chapter 5 Riemannian and Semi-riemannian Manifolds
  12. Chapter 6 Physical Application
  13. Bibliography
  14. Index