Tensor Analysis on Manifolds
eBook - ePub

Tensor Analysis on Manifolds

Richard L. Bishop, Samuel I. Goldberg

Partager le livre
  1. 288 pages
  2. English
  3. ePUB (adapté aux mobiles)
  4. Disponible sur iOS et Android
eBook - ePub

Tensor Analysis on Manifolds

Richard L. Bishop, Samuel I. Goldberg

DĂ©tails du livre
Aperçu du livre
Table des matiĂšres
Citations

À propos de ce livre

`This is a first-rate book and deserves to be widely read.` — American Mathematical Monthly
Despite its success as a mathematical tool in the general theory of relativity and its adaptability to a wide range of mathematical and physical problems, tensor analysis has always had a rather restricted level of use, with an emphasis on notation and the manipulation of indices. This book is an attempt to broaden this point of view at the stage where the student first encounters the subject. The authors have treated tensor analysis as a continuation of advanced calculus, striking just the right balance between the formal and abstract approaches to the subject.
The material proceeds from the general to the special. An introductory chapter establishes notation and explains various topics in set theory and topology. Chapters 1 and 2 develop tensor analysis in its function-theoretical and algebraic aspects, respectively. The next two chapters take up vector analysis on manifolds and integration theory. In the last two chapters (5 and 6) several important special structures are studied, those in Chapter 6 illustrating how the previous material can be adapted to clarify the ideas of classical mechanics. The text as a whole offers numerous examples and problems.
A student with a background of advanced calculus and elementary differential equation could readily undertake the study of this book. The more mature the reader is in terms of other mathematical knowledge and experience, the more he will learn from this presentation.

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans paramĂštres et de cliquer sur « RĂ©silier l’abonnement ». C’est aussi simple que cela ! Une fois que vous aurez rĂ©siliĂ© votre abonnement, il restera actif pour le reste de la pĂ©riode pour laquelle vous avez payĂ©. DĂ©couvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptĂ©s aux mobiles peuvent ĂȘtre tĂ©lĂ©chargĂ©s via l’application. La plupart de nos PDF sont Ă©galement disponibles en tĂ©lĂ©chargement et les autres seront tĂ©lĂ©chargeables trĂšs prochainement. DĂ©couvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accĂšs complet Ă  la bibliothĂšque et Ă  toutes les fonctionnalitĂ©s de Perlego. Les seules diffĂ©rences sont les tarifs ainsi que la pĂ©riode d’abonnement : avec l’abonnement annuel, vous Ă©conomiserez environ 30 % par rapport Ă  12 mois d’abonnement mensuel.
Qu’est-ce que Perlego ?
Nous sommes un service d’abonnement Ă  des ouvrages universitaires en ligne, oĂč vous pouvez accĂ©der Ă  toute une bibliothĂšque pour un prix infĂ©rieur Ă  celui d’un seul livre par mois. Avec plus d’un million de livres sur plus de 1 000 sujets, nous avons ce qu’il vous faut ! DĂ©couvrez-en plus ici.
Prenez-vous en charge la synthÚse vocale ?
Recherchez le symbole Écouter sur votre prochain livre pour voir si vous pouvez l’écouter. L’outil Écouter lit le texte Ă  haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l’accĂ©lĂ©rer ou le ralentir. DĂ©couvrez-en plus ici.
Est-ce que Tensor Analysis on Manifolds est un PDF/ePUB en ligne ?
Oui, vous pouvez accĂ©der Ă  Tensor Analysis on Manifolds par Richard L. Bishop, Samuel I. Goldberg en format PDF et/ou ePUB ainsi qu’à d’autres livres populaires dans Mathematics et Vector Analysis. Nous disposons de plus d’un million d’ouvrages Ă  dĂ©couvrir dans notre catalogue.

Informations

Année
2012
ISBN
9780486139234
CHAPTER 1
Manifolds
1.1. Definition of a Manifold
A manifold, roughly, is a topological space in which some neighborhood of each point admits a coordinate system, consisting of real coordinate functions on the points of the neighborhood, which determine the position of points and the topology of that neighborhood; that is, the space is locally cartesian. Moreover, the passage from one coordinate system to another is smooth in the overlapping region, so that the meaning of “differentiable” curve, function, or map is consistent when referred to either system. A detailed definition will be given below.
The mathematical models for many physical systems have manifolds as the basic objects of study, upon which further structure may be defined to obtain whatever system is in question. The concept generalizes and includes the special cases of the Cartesian line, plane, space, and the surfaces which are studied in advanced calculus. The theory of these spaces which generalizes to manifolds includes the ideas of differentiable functions, .smooth curves, tangent vectors, and vector fields. However, the notions of distance between points and straight lines (or shortest paths) are not part of the idea of a manifold but arise as consequences of additional structure, which may or may not be assumed and in any case is not unique.
A manifold has a dimension. As a model for a physical system this is the number of degrees of freedom. We limit ourselves to the study of finite-dimensional manifolds.
Some preliminary definitions will facilitate the definition of a manifold. If X is a topological space, a chart at p ∈ X is a function ÎŒ : U → Rd, where U is an open set containing p and ÎŒ is a homeomorphism onto an open subset of Rd. The dimension of the chart ÎŒ: U → Rd is d . The coordinate functions of the chart are the real−valued functions on U given by the entries of values of ÎŒ; that is, they are the functions xi = ui ∘ ÎŒ: U → R, where ui: Rd → R are the standard coordinates on Rd. [The ui are defined by ui (a1,
, ad) = ai. The superscripts are not powers, of course, but are merely the customary tensor indexing of coordinates. If powers are needed, extra parentheses may be used, (x)3 instead of x3 for the cube of x , but usually the context will contain enough distinction to make such parentheses unnecessary.] Thus for each q ∈U, ”q = (x1q ,
,xdq ), so we shall also write ÎŒ = (x1,
, xd). In other terminology we call uuu a coordinate map, U the coordinate neighborhood, and the collection (x 1,.., xd) coordinates or a coordinate system at p .
We shall restrict the symbols “ui” to this usage as standard coordinates on Rd. For R2 and R3 we shall also use x, y, z as coordinates as is customary, except that we shall usually treat them as functions.
A real-valued function f : V → R is C∞ (continuous to order ∞) if V is an open set in Rd and f has continuous partial derivatives of all orders and types (mixed and not). A function φ: V → Re is a C∞ map if the components ui ∘ φ: V → R are C∞, i = 1, 
,e.
More generally ∈ is Ck, k a nonnegative integer, if all partial derivatives up to and including those of order k exist and are continuous. (C° means merely continuous.) A map φ is analytic if ui ∘ φ are real-analytic, that is, may be expressed in a neighborhood of each point by means of a convergent power series in cartesian coordinates having their origin at the point. Analytic maps are C∞ but not conversely.
Problem 1.1.1. (a) Define f : R → R by
image
.
Show that f is C∞ and that all the derivatives of f at 0 vanish; that is, f(k)0 = 0 for every k.
(b) If g : R → R is analytic in a neighborhood of 0, then...

Table des matiĂšres