Instrument Flying Handbook (2025)
eBook - ePub

Instrument Flying Handbook (2025)

FAA-H-8083-15B

,
  1. 392 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Instrument Flying Handbook (2025)

FAA-H-8083-15B

,

About this book

Aviation Supplies & Academics, Inc. has been the industry's trusted source for official FAA publications for over 80 years. Look for the ASA wings to ensure you're purchasing the latest authentic FAA release.

This handbook FAA-H-8083-15B is current in 2025.

The Instrument Flying Handbook is the FAA's primary pilot resource for instrument flight rules (IFR) covering everything pertinent to operating an aircraft in instrument meteorological conditions (IMC) or without reference to outside visuals, relying solely on the information gleaned from the cockpit. Readers will find chapters on the national airspace system, the air traffic control system, human factors, aerodynamics, flight instruments, flight maneuvers for IFR operations, navigation, emergency operations, as well as helicopter operations and more.The material in this manual applies to both conventional steam-gauge analog instrumentation and the glass cockpit electronic flight displays found in advanced aircraft. Information is well organized into separate coverage of the traditional 6-pack and discussions of pictorial tape displays. Advanced systems are covered, including flight management systems, the primary flight display (PFD) and multi-function display (MFD), synthetic vision, and traffic advisory systems. The book also features a synopsis of instrument clearance shorthand, as well as an instrument training lesson guide.The Instrument Flying Handbook is designed for use by flight instructors, pilots preparing for the Instrument Rating FAA Knowledge and Practical Exams, and instrument-rated pilots looking for a refresher or preparing for an Instrument Proficiency Check (IPC). Illustrated throughout with detailed, full-color drawings and photographs; comprehensive glossary and index.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Instrument Flying Handbook (2025) by in PDF and/or ePUB format, as well as other popular books in Technology & Engineering & Aviation. We have over one million books available in our catalogue for you to explore.
CH1.ai
Introduction
The National Airspace System (NAS) is the network of United States airspace: air navigation facilities, equipment, services, airports or landing areas, aeronautical charts, information/services, rules, regulations, procedures, technical information, manpower, and material. Included are system components shared jointly with the military. The system’s present configuration is a reflection of the technological advances concerning the speed and altitude capability of jet aircraft, as well as the complexity of microchip and satellite-based navigation equipment. To conform to international aviation standards, the United States adopted the primary elements of the classification system developed by the International Civil Aviation Organization (ICAO).
This chapter is a general discussion of airspace classification; en route, terminal, and approach procedures; and operations within the NAS. Detailed information on the classification of airspace, operating procedures, and restrictions is found in the Aeronautical Information Manual (AIM).
Airspace Classification
Airspace in the United States [Figure 1-1] is designated as follows:
1. Class A. Generally, airspace from 18,000 feet mean sea level (MSL) up to and including flight level (FL) 600, including the airspace overlying the waters within 12 nautical miles (NM) of the coast of the 48 contiguous states and Alaska. Unless otherwise authorized, all pilots must operate their aircraft under instrument flight rules (IFR).
2. Class B. Generally, airspace from the surface to 10,000 feet MSL surrounding the nation’s busiest airports in terms of airport operations or passenger enplanements. The configuration of each Class B airspace area is individually tailored, consists of a surface area and two or more layers (some Class B airspace areas resemble upside-down wedding cakes), and is designed to contain all published instrument procedures once an aircraft enters the airspace. An air traffic control (ATC) clearance is required for all aircraft to operate in the area, and all aircraft that are so cleared receive separation services within the airspace.
3. Class C. Generally, airspace from the surface to 4,000 feet above the airport elevation (charted in MSL) surrounding those airports that have an operational control tower are serviced by a radar approach control and have a certain number of IFR operations or passenger enplanements. Although the configuration of each Class C area is individually tailored, the airspace usually consists of a surface area with a 5 NM radius, an outer circle with a 10 NM radius that extends from 1,200 feet to 4,000 feet above the airport elevation and an outer area. Each aircraft must establish two-way radio communications with the ATC facility providing air traffic services prior to entering the airspace and thereafter maintain those communications while within the airspace.
4. Class D. Generally, airspace from the surface to 2,500 feet above the airport elevation (charted in MSL) surrounding those airports that have an operational control tower. The configuration of each Class D airspace area is individually tailored and, when instrument procedures are published, the airspace normally designed to contain the procedures. Arrival extensions for instrument approach procedures (IAPs) may be Class D or Class E airspace. Unless otherwise authorized, each aircraft must establish two-way radio communications with the ATC facility providing air traffic services prior to entering the airspace and thereafter maintain those communications while in the airspace.
5. Class E. Generally, if the airspace is not Class A, B, C, or D, and is controlled airspace, then it is Class E airspace. Class E airspace extends upward from either the surface or a designated altitude to the overlying or adjacent controlled airspace. When designated as a surface area, the airspace is configured to contain all instrument procedures. Also in this class are federal airways, airspace beginning at either 700 or 1,200 feet above ground level (AGL) used to transition to and from the terminal or en route environment, and en route domestic and offshore airspace areas designated below 18,000 feet MSL. Unless designated at a lower altitude, Class E airspace begins at 14,500 MSL over the United States, including that airspace overlying the waters within 12 NM of the coast of the 48 contiguous states and Alaska, up to but not including 18,000 feet MSL, and the airspace above FL 600.
6. Class G. Airspace not designated as Class A, B, C, D, or E. Class G airspace is essentially uncontrolled by ATC except when associated with a temporary control tower.
Fig1-1.psd
Figure 1-1. Airspace classifications.
Special Use Airspace
Special use airspace is the designation for airspace in which certain activities must be confined or where limitations may be imposed on aircraft operations that are not part of those activities. Certain special use airspace areas can create limitations on the mixed use of airspace. The special use airspace depicted on instrument charts includes the area name or number, effective altitude, time and weather conditions of operation, the controlling agency, and the chart panel location. On National Aeronautical Navigation Products (AeroNav Products) en route charts, this information is available on one of the end panels.
Prohibited areas contain airspace of defined dimensions within which the flight of aircraft is prohibited. Such areas are established for security or other reasons associated with the national welfare. These areas are published in the Federal Register and are depicted on aeronautical charts. The area is charted as a “P” followed by a number (e.g., “P-123”).
Restricted areas are areas where operations are hazardous to nonparticipating aircraft and contain airspace within which the flight of aircraft, while not wholly prohibited, is subject to restrictions. Activities within these areas must be confined because of their nature, or limitations may be imposed upon aircraft operations that are not a part of those activities, or both. Restricted areas denote the existence of unusual, often invisible, hazards to aircraft (e.g., artillery firing, aerial gunnery, or guided missiles). IFR flights may be authorized to transit the airspace and are routed accordingly. Penetration of restricted areas without authorization from the using or controlling agency may be extremely hazardous to the aircraft and its occupants. ATC facilities apply the following procedures when aircraft are operating on an IFR clearance (including those cleared by ATC to maintain visual flight rules (VFR)-On-Top) via a route that lies within joint-use restricted airspace:
1. If the restricted area is not active and has been released to the Federal Aviation Administration (FAA), the ATC facility will allow the aircraft to operate in the restricted airspace without issuing specific clearance for it to do so.
2. If the restricted area is active and has not been released to the FAA, the ATC facility will issue a clearance that will ensure the aircraft avoids the restricted airspace.
Restricted areas are charted with an “R” followed by a number (e.g., “R-5701”) and are depicted on the en route chart appropriate for use at the altitude or FL being flown.
Warning areas are similar in nature to restricted areas; however, the U.S. Government does not have sole jurisdiction over the airspace. A warning area is airspace of defined dimensions, extending from 12 NM outward from the coast of the United States, containing activity that may be hazardous to nonparticipating aircraft. The purpose of such areas is to warn nonparticipating pilots of the potential danger. A warning area may be located over domestic or international waters or both. The airspace is designated with a “W” followed by a number (e.g., “W-123”).
Military operations areas (MOAs) consist of airspace with defined vertical and lateral limits established for the purpose of separating certain military training activities from IFR traffic. Whenever an MOA is being used, nonparticipating IFR traffic may be cleared through an MOA if IFR separation can be provided by ATC. Otherwise, ATC will reroute or restrict nonparticipating IFR traffic. MOAs are depicted on sectional, VFR terminal area, and en route low altitude charts and are not numbered (e.g., “Boardman MOA”).
Alert areas are depicted on aeronautical charts with an “A” followed by a number (e.g., “A-123”) to inform nonpa...

Table of contents

  1. Copyright
  2. Preface
  3. Acknowledgments
  4. Introduction
  5. Chapter 1: The National Airspace System
  6. Chapter 2: The Air Traffic Control System
  7. Chapter 3: Human Factors
  8. Chapter 4: Aerodynamic Factors
  9. Chapter 5: Flight Instruments
  10. Chapter 6, Section I: Airplane Attitude Instrument Flying Using Analog Instrumentation
  11. Chapter 6, Section II: Airplane Attitude Instrument Flying Using an Electronic Flight Display
  12. Chapter 7, Section I: Airplane Basic Flight Maneuvers Using Analog Instrumentation
  13. Chapter 7, Section II: Airplane Basic Flight Maneuvers Using an Electronic Flight Display
  14. Chapter 8: Helicopter Attitude Instrument Flying
  15. Chapter 9: Navigation Systems
  16. Chapter 10: IFR Flight
  17. Chapter 11: Emergency Operations
  18. Appendix A: Clearance Shorthand
  19. Appendix B: Instrument Training Lesson Guide
  20. Glossary