
Data Analysis and Graphics Using R
An Example-Based Approach
- English
- PDF
- Available on iOS & Android
About this book
Discover what you can do with R! Introducing the R system, covering standard regression methods, then tackling more advanced topics, this book guides users through the practical, powerful tools that the R system provides. The emphasis is on hands-on analysis, graphical display, and interpretation of data. The many worked examples, from real-world research, are accompanied by commentary on what is done and why. The companion website has code and datasets, allowing readers to reproduce all analyses, along with solutions to selected exercises and updates. Assuming basic statistical knowledge and some experience with data analysis (but not R), the book is ideal for research scientists, final-year undergraduate or graduate-level students of applied statistics, and practising statisticians. It is both for learning and for reference. This third edition expands upon topics such as Bayesian inference for regression, errors in variables, generalized linear mixed models, and random forests.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover
- Half-title
- Series-title
- Title
- Copyright
- Dedication
- Contents
- Preface
- Content - how the chapters fit together
- 1 A brief introduction to R
- 2 Styles of data analysis
- 3 Statistical models
- 4 A review of inference concepts
- 5 Regression with a single predictor
- 6 Multiple linear regression
- 7 Exploiting the linear model framework
- 8 Generalized linear models and survival analysis
- 9 Time series models
- 10 Multi-level models and repeated measures
- 11 Tree-based classification and regression
- 12 Multivariate data exploration and discrimination
- 13 Regression on principal component or discriminant scores
- 14 The R system - additional topics
- 15 Graphs in R
- Epilogue
- References
- Index of R symbols and functions
- Index of terms
- Index of authors