Introduction to Many-Body Physics
About this book
A modern, graduate-level introduction to many-body physics in condensed matter, this textbook explains the tools and concepts needed for a research-level understanding of the correlated behavior of quantum fluids. Starting with an operator-based introduction to the quantum field theory of many-body physics, this textbook presents the Feynman diagram approach, Green's functions and finite-temperature many-body physics before developing the path integral approach to interacting systems. Special chapters are devoted to the concepts of Fermi liquid theory, broken symmetry, conduction in disordered systems, superconductivity and the physics of local-moment metals. A strong emphasis on concepts and numerous exercises make this an invaluable course book for graduate students in condensed matter physics. It will also interest students in nuclear, atomic and particle physics.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Table of contents
- Cover
- Half-Title page
- Title page
- Copyright page
- Dedication page
- Contents
- Preface
- Introduction
- 1 Scales and complexity
- 2 Quantum fields
- 3 Conserved particles
- 4 Simple examples of second quantization
- 5 Green's functions
- 6 Landau Fermi-liquid theory
- 7 Zero-temperature Feynman diagrams
- 8 Finite-temperature many-body physics
- 9 Fluctuationâdissipation theorem and linear response theory
- 10 Electron transport theory
- 11 Phase transitions and broken symmetry
- 12 Path integrals
- 13 Path integrals and itinerant magnetism
- 14 Superconductivity and BCS theory
- 15 Retardation and anisotropic pairing
- 16 Local moments and the Kondo effect
- 17 Heavy electrons
- 18 Mixed valence, fluctuations, and topology
- Epilogue: the challenge of the future
- Author Index
- Subject Index
