Deconvolution of Images and Spectra
eBook - ePub

Deconvolution of Images and Spectra

Second Edition

Peter A. Jansson

Buch teilen
  1. 528 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Deconvolution of Images and Spectra

Second Edition

Peter A. Jansson

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

Deconvolution is a technique in signal or image processing that is applied to recover information. When it is employed, it is usually because instrumental effects of spreading and blurring have obscured that information. In 1996, Deconvolution of Images and Spectra was published (Academic Press) as a second edition of Jansson's 1984 book, Deconvolution with Applications in Spectroscopy. This landmark volume was first published to provide both an overview of the field, and practical methods and results.
The present Dover edition is a corrected reprinting of the second edition. It incorporates all the advantages of its predecessors by conveying a clear understanding of the field while providing a selection of effective, practical techniques. The authors assume only a working knowledge of calculus, and emphasize practical applications over topics of theoretical interest, focusing on areas that have been pivotal to the evolution of the most effective methods. This tutorial is essentially self-contained. Readers will find it practical and easy to understand.

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Deconvolution of Images and Spectra als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Deconvolution of Images and Spectra von Peter A. Jansson im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Technology & Engineering & Engineering General. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Chapter 1 | Convolution and Related Concepts
Peter A. Jansson
College of Optical Sciences, University of Arizona, Tucson
I. Introduction
II. Definition of Convolution
A. Discrete Case
B. Continuous Case
III. Properties
A. Integration and Differentiation
B. Central-Limit Theorem
C. Voigt Function
IV. Fourier Transforms
A. Special Symbols and Useful Functions
B. Some Properties and Relationships
C. Sampling and the Discrete Fourier Transform
D. Hartley Transform
V. The Problem of Deconvolution
A. Defining the Problem
B. Difficulties
C. Alternatives to Deconvolution
References
List of Symbols
a, b, g functions a(x), b(x), g(x), with no explicit dependences shown
a',b',g' first derivatives of functions a, b,g
an,bn,gn, sampled values of a(x), b(x), g(x)
a(x), b(x), g(x) functions used to illustrate properties of convolution
A,B,G functions A(ω), B(ω), C(ω), with no explicit dependences shown
A(ω), B(ω), G(ω) Fourier transforms of a(x), b(x), g(x)
c Constant
C Constant
cas(x) Cos(x)+Sin(x)
f(x),F(ω) function and Fourier transform, respectively
F'(ω), F"(ω) first and second derivatives of F(ω), respectively
G(ζ) Fourier transform of g(x) give n by alternative convention
H(X) 1 when x>0, 0 when x≤0
i(x),i "image" data that incorporate smearing by s(x); sometimes include noise
ip(x) ideal noise-free image data
îM(υ,x) model representing idealized image data
j imaginary operator such that j2 = -1
n(x) additive noise
Na,Nb,Ng number of samples available for function a,b,g
o(x),o "object" or function sought by deconvolution, usually the true spectrum, but also the instrument function when this is sought by deconvolution
ô(x) estimate of o(x)
ôM(υ,x) model of true spectrum or true object
q independent variable given in scaled units of Gaussian halfwidths
page2aa
rect(x) rectangle function having haif-width ½
sgn(x) 1 when x>0, -1 when x≤0
sinc(x) (sin πx)/πx
Si(x)
page2ab
s(x),s spread function, usually the instrument function, but also spreading due to other causes
s(x,x') general integral equation kernel; shift-variant spread function
υ(x) function used to illustrate Fourier transform
V(ω) Fourier transform of υ(x) given by third system
x,x' generalized independent variables and arguments of various functions
x〉,〈x2 first and second moments of a distribution of x
z(x)z1(x),z2(x) functions used to illustrate the Hartley transform
z(ω)z1(ω ),z2(ω ) Hartley transforms of z(x), z1(x), and z2(x), respectively
z2e(ω)z20(ω) even and odd parts of Z2(ω)
® fractional increase in instrument response-function breadth due to convolution with narrow spectral line
β parameter specifying influence of sharpness or smoothness criteria
convolution operation
δ(x),δ Dirac δ function or impulse
δ'(x),δ' first derivative of δ(x)
Δ(x) half-width at half maximum (HWHM)
ΔxG,ΔxC Gaussian and Cauchy half-widths at half maximum
ΔxN Nyquist interval
ζ conjugate of x in alternative Fourier transform system; Fourier frequency in cycles per units of x; variable of integration
θ(x),
page3aa
spurious part of solution ô(x) and its Fourier transform Ô(ω)
page3ab
triangle function of unit height and half-width ½
μ scaled ratio of Cauchy to Gaussian half-widths,
σ standard deviation
σ2 variance
σ2a2b2g variances of a, b,g
σ2A2B2G variances of A,B,G
τ(ω ),τ τ(ω ), Fourier transform of s(x)
υ vector having components υl
υ1 parameters of a model comprising multiple peaks
Φ(υ) objective function to be minimized
ω conjugate of x; Fourier frequency in radians per units of x
Ω cutoff frequency such that τ(ω) = 0 for |ω| > Ω
II(x) positive-impulse pair
page3ad
II(x) impulse pair with positive and negative components,
page3ae
III(x) Dirac “comb”
page3af
I. Introduction
Our daily experience abounds with phenomena that can be described mathematically by convolution. Spreading, blurring, and mixing are qualitative terms frequently used to describe these phenomena. Sometimes the spreading is caused by physical occurrences unrelated to our mechanisms of perception; sometimes our sensory inputs are directly involved. The blurred visual image is an example that comes to mind. The blur may exist in the image that the eye views, or it may result from a physiological defect. Biological sensory perception has parallels in the technology of instrumentation. Like the human eye, most instruments cannot discern the finest detail. Instruments are frequently designed to determine some observable quantity while an independent parameter is varied. An otherwise isolated measurement is often corrupted by undesired contributions that should rightfully have been confined to neighboring measurements. When such contributions add up linearly in a certain way, the distortion may be described by the mathematics of convolution.
Spectroscopy is profoundly affected by these spreading and blurring phenomena. The recovery of a spectrum as it would be observed by a hypothetical, perfectly resolving instrument is an exciting goal. Recent advances have stimulated development of restoring methods that r...

Inhaltsverzeichnis