Deconvolution of Images and Spectra
eBook - ePub

Deconvolution of Images and Spectra

Second Edition

Peter A. Jansson

Partager le livre
  1. 528 pages
  2. English
  3. ePUB (adapté aux mobiles)
  4. Disponible sur iOS et Android
eBook - ePub

Deconvolution of Images and Spectra

Second Edition

Peter A. Jansson

DĂ©tails du livre
Aperçu du livre
Table des matiĂšres
Citations

À propos de ce livre

Deconvolution is a technique in signal or image processing that is applied to recover information. When it is employed, it is usually because instrumental effects of spreading and blurring have obscured that information. In 1996, Deconvolution of Images and Spectra was published (Academic Press) as a second edition of Jansson's 1984 book, Deconvolution with Applications in Spectroscopy. This landmark volume was first published to provide both an overview of the field, and practical methods and results.
The present Dover edition is a corrected reprinting of the second edition. It incorporates all the advantages of its predecessors by conveying a clear understanding of the field while providing a selection of effective, practical techniques. The authors assume only a working knowledge of calculus, and emphasize practical applications over topics of theoretical interest, focusing on areas that have been pivotal to the evolution of the most effective methods. This tutorial is essentially self-contained. Readers will find it practical and easy to understand.

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans paramĂštres et de cliquer sur « RĂ©silier l’abonnement ». C’est aussi simple que cela ! Une fois que vous aurez rĂ©siliĂ© votre abonnement, il restera actif pour le reste de la pĂ©riode pour laquelle vous avez payĂ©. DĂ©couvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptĂ©s aux mobiles peuvent ĂȘtre tĂ©lĂ©chargĂ©s via l’application. La plupart de nos PDF sont Ă©galement disponibles en tĂ©lĂ©chargement et les autres seront tĂ©lĂ©chargeables trĂšs prochainement. DĂ©couvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accĂšs complet Ă  la bibliothĂšque et Ă  toutes les fonctionnalitĂ©s de Perlego. Les seules diffĂ©rences sont les tarifs ainsi que la pĂ©riode d’abonnement : avec l’abonnement annuel, vous Ă©conomiserez environ 30 % par rapport Ă  12 mois d’abonnement mensuel.
Qu’est-ce que Perlego ?
Nous sommes un service d’abonnement Ă  des ouvrages universitaires en ligne, oĂč vous pouvez accĂ©der Ă  toute une bibliothĂšque pour un prix infĂ©rieur Ă  celui d’un seul livre par mois. Avec plus d’un million de livres sur plus de 1 000 sujets, nous avons ce qu’il vous faut ! DĂ©couvrez-en plus ici.
Prenez-vous en charge la synthÚse vocale ?
Recherchez le symbole Écouter sur votre prochain livre pour voir si vous pouvez l’écouter. L’outil Écouter lit le texte Ă  haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l’accĂ©lĂ©rer ou le ralentir. DĂ©couvrez-en plus ici.
Est-ce que Deconvolution of Images and Spectra est un PDF/ePUB en ligne ?
Oui, vous pouvez accĂ©der Ă  Deconvolution of Images and Spectra par Peter A. Jansson en format PDF et/ou ePUB ainsi qu’à d’autres livres populaires dans Technology & Engineering et Engineering General. Nous disposons de plus d’un million d’ouvrages Ă  dĂ©couvrir dans notre catalogue.

Informations

Année
2014
ISBN
9780486294452
Chapter 1 | Convolution and Related Concepts
Peter A. Jansson
College of Optical Sciences, University of Arizona, Tucson
I. Introduction
II. Definition of Convolution
A. Discrete Case
B. Continuous Case
III. Properties
A. Integration and Differentiation
B. Central-Limit Theorem
C. Voigt Function
IV. Fourier Transforms
A. Special Symbols and Useful Functions
B. Some Properties and Relationships
C. Sampling and the Discrete Fourier Transform
D. Hartley Transform
V. The Problem of Deconvolution
A. Defining the Problem
B. Difficulties
C. Alternatives to Deconvolution
References
List of Symbols
a, b, g functions a(x), b(x), g(x), with no explicit dependences shown
a',b',g' first derivatives of functions a, b,g
an,bn,gn, sampled values of a(x), b(x), g(x)
a(x), b(x), g(x) functions used to illustrate properties of convolution
A,B,G functions A(ω), B(ω), C(ω), with no explicit dependences shown
A(ω), B(ω), G(ω) Fourier transforms of a(x), b(x), g(x)
c Constant
C Constant
cas(x) Cos(x)+Sin(x)
f(x),F(ω) function and Fourier transform, respectively
F'(ω), F"(ω) first and second derivatives of F(ω), respectively
G(ζ) Fourier transform of g(x) give n by alternative convention
H(X) 1 when x>0, 0 when x≀0
i(x),i "image" data that incorporate smearing by s(x); sometimes include noise
ip(x) ideal noise-free image data
ĂźM(υ,x) model representing idealized image data
j imaginary operator such that j2 = -1
n(x) additive noise
Na,Nb,Ng number of samples available for function a,b,g
o(x),o "object" or function sought by deconvolution, usually the true spectrum, but also the instrument function when this is sought by deconvolution
ĂŽ(x) estimate of o(x)
ĂŽM(υ,x) model of true spectrum or true object
q independent variable given in scaled units of Gaussian halfwidths
page2aa
rect(x) rectangle function having haif-width œ
sgn(x) 1 when x>0, -1 when x≀0
sinc(x) (sin πx)/πx
Si(x)
page2ab
s(x),s spread function, usually the instrument function, but also spreading due to other causes
s(x,x') general integral equation kernel; shift-variant spread function
υ(x) function used to illustrate Fourier transform
V(ω) Fourier transform of υ(x) given by third system
x,x' generalized independent variables and arguments of various functions
〈xâŒȘ,〈x2âŒȘ first and second moments of a distribution of x
z(x)z1(x),z2(x) functions used to illustrate the Hartley transform
z(ω)z1(ω ),z2(ω ) Hartley transforms of z(x), z1(x), and z2(x), respectively
z2e(ω)z20(ω) even and odd parts of Z2(ω)
Âź fractional increase in instrument response-function breadth due to convolution with narrow spectral line
ÎČ parameter specifying influence of sharpness or smoothness criteria
⊗ convolution operation
ÎŽ(x),ÎŽ Dirac ÎŽ function or impulse
ÎŽ'(x),ÎŽ' first derivative of ÎŽ(x)
Δ(x) half-width at half maximum (HWHM)
ΔxG,ΔxC Gaussian and Cauchy half-widths at half maximum
ΔxN Nyquist interval
ζ conjugate of x in alternative Fourier transform system; Fourier frequency in cycles per units of x; variable of integration
Ξ(x),
page3aa
spurious part of solution ĂŽ(x) and its Fourier transform Ô(ω)
page3ab
triangle function of unit height and half-width œ
Ό scaled ratio of Cauchy to Gaussian half-widths,
σ standard deviation
σ2 variance
σ2a,σ2b,σ2g variances of a, b,g
σ2A,σ2B,σ2G variances of A,B,G
τ(ω ),τ τ(ω ), Fourier transform of s(x)
υ vector having components υl
υ1 parameters of a model comprising multiple peaks
Ί(υ) objective function to be minimized
ω conjugate of x; Fourier frequency in radians per units of x
Ω cutoff frequency such that τ(ω) = 0 for |ω| > Ω
II(x) positive-impulse pair
page3ad
II(x) impulse pair with positive and negative components,
page3ae
III(x) Dirac “comb”
page3af
I. Introduction
Our daily experience abounds with phenomena that can be described mathematically by convolution. Spreading, blurring, and mixing are qualitative terms frequently used to describe these phenomena. Sometimes the spreading is caused by physical occurrences unrelated to our mechanisms of perception; sometimes our sensory inputs are directly involved. The blurred visual image is an example that comes to mind. The blur may exist in the image that the eye views, or it may result from a physiological defect. Biological sensory perception has parallels in the technology of instrumentation. Like the human eye, most instruments cannot discern the finest detail. Instruments are frequently designed to determine some observable quantity while an independent parameter is varied. An otherwise isolated measurement is often corrupted by undesired contributions that should rightfully have been confined to neighboring measurements. When such contributions add up linearly in a certain way, the distortion may be described by the mathematics of convolution.
Spectroscopy is profoundly affected by these spreading and blurring phenomena. The recovery of a spectrum as it would be observed by a hypothetical, perfectly resolving instrument is an exciting goal. Recent advances have stimulated development of restoring methods that r...

Table des matiĂšres