Sustainable and Functional Redox Chemistry
eBook - ePub

Sustainable and Functional Redox Chemistry

Shinsuke Inagi, Shinsuke Inagi

Buch teilen
  1. 386 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Sustainable and Functional Redox Chemistry

Shinsuke Inagi, Shinsuke Inagi

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

Mimicking nature's efficiency and sustainability in organic chemistry is a major goal for future chemists; redox reactions are a key element in a variety of fields ranging from synthesis and catalysis to materials chemistry and analytical applications. Sustainability is increasingly becoming a consideration in synthesis and functional chemistry and an essential element for the next generation of chemistry in academia and industry. This book represents a compilation of the latest advancements in functional redox chemistry and demonstrates its importance in achieving a more sustainable future. This book is an ideal companion for any postgraduate students or researchers interested in sustainability in academia and industry.

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Sustainable and Functional Redox Chemistry als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Sustainable and Functional Redox Chemistry von Shinsuke Inagi, Shinsuke Inagi im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Physical Sciences & Chemistry. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Jahr
2022
ISBN
9781839164835
Part 1
Sustainable Redox Reaction
Chapter 1
Redox-mediated Electrochemical Cyclization Reactions
Zheng-Jian Wu and Hai-Chao Xua
a State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China Email: [email protected]

1.1 Introduction

More than 90% of common organic compounds contain rings.1,2 As a result, the search for efficient means for the construction of cyclic structures has been constantly pursued in the field of organic synthesis.
Organic electrochemistry employs electric current to drive organic synthetic reactions and is attracting renewed interest in the past decade.3,4 Since electrons do not produce reagent-related waste and are among the cheapest reagents for chemical synthesis, organic electrochemistry holds great promise in developing green and sustainable synthetic methods.5 While the majority of the reported organic electrosynthetic reactions rely on direct electrolysis, indirect electrolysis with mediators has been increasingly explored, especially in the past few years.69 The use of mediators not only allows the reactions to proceed under mild electrode potentials to reduce energy consumption and increase selectivity10,11 but also significantly expands the scope of organic electrosynthesis to many redox inactive compounds through atom transfer catalysis12 or C–H bond activation.1316 In addition, electrolysis with a redox mediator allows the generation of radical intermediates in the bulk solution away from the electrode surface to avoid electrode passivation and reduce their local concentration.9 Key to the success of indirect electrosynthesis is the development of mediators that can function under electrochemical conditions. Efforts in the past few years have significantly expanded the list of mediators, some of which are listed in Scheme 1.1A, leading to the rapid development of indirect electrosynthesis. The mediators promote electrochemical reactions through an outer-sphere or inner-sphere mechanism (Scheme 1.1B). In the latter case, a transient adduct is formed between the mediator and substrate either after or before electron transfer on the electrode. In this context, many redox-mediated electrochemical cyclization reactions have been disclosed for the synthesis of various hetero- and carbocycles and will be the focus of this chapter (Scheme 1.1C). These reactions proceed mainly through radical or ionic cyclization to forge the ring structures.
image
Scheme 1.1 Redox-mediated electrochemical cyclization reactions.

1.2 Radical Cyclization Reactions

Radical cyclization reactions are effective for the synthesis of ring structures because of the versatile reactivity of radical species and the possibility for cyclization cascades.17,18 In this context, several redox strategies have been developed for the electrochemical generation of various heteroatom- and carbon-centered radical species. These reactive species react to form several classes of hetero- and carbocycles by cyclization onto the tethered π-systems, 1,5-hydrogen atom transfer, or intermolecular addition to alkenes or alkynes to induce cyclizations.

1.2.1 Cyclization Reactions of Heteroatom-centered Radicals

Nitrogen-centered radicals (NCRs) are attractive intermediates for the construction of C–N bonds.1922 These reactive species are commonly produced through the cleavage of a weak N–heteroatom bond.23 The current trend is to generate NCRs from stable and easily available N–H precursors.2428
The Xu group reported in 2014 an early example of redox-mediated electrochemical generation of NCRs from anilides using 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) as the mediator (Scheme 1.2A).29 Mechanistically, the anilide 1d is deprotonated by hydroxide generated at the cathode and then oxidized to amidyl radical 3via single electron transfer (SET) by anodically generated oxoammonium salt (TEMPO+). Intermediate 3 undergoes 5-exo-trig cyclizations to give carbon-centered radical 4, which is trapped with TEMPO to generate the final aminooxygenation product 2d. A similar aminooxygenation reaction was later achieved using a continuous flow electrochemical microreactor by Wirth and coworkers.30 Although the use of TEMPO as the mediator limits the reaction to aminooxygenation,31 this work proves that redox catalysis can be an effective strategy in developing electrochemically driven radical reactions. Importantly, the electrode potentials needed for these mediated electrochemical reactions are much lower than those for the anilide substrates. In addition, the continuous generation of the requisite base at the cathode to promote the oxidation reaction obviates the need to add stoichiometric strong bases and avoids base-induced side reactions.
image
Scheme 1.2 Mediated electrochemical generation of NCRs.
The Xu group then went on to develop several new catalytic systems for the oxidative generation of NCRs from anilides employing ferrocene (Cp2Fe), cobalt salen complex 5, tetraarylhydrazine 6, or phenothiazine 7 as the catalysts (Scheme 1.2B).26 All these mediators catalyze the anilide oxidation through outer-sphere electron transfer except for 5, which oxidizes the anilides through inner-sphere electron transfer.32 These electrophilic NCRs generated under the electrocatalytic conditions undergo monocyclization or cyclization cascades onto tethered alkenes (Scheme 1.3A–C)3335 or alkynes (Scheme 1.3D–E)3638 to form several types of useful N-heterocycles. Note that ferrocene is not a good catalyst for anilide oxidation in aqueous solutions because of its reduced stability and oxidation potential in these solvents. As a result, organic mediators such as 7 or 6 are used for the cyclizations of 12 and 24, respectively.34,38 The use of redox catalysis allows the formation of heterocyclic products that are oxidized at lower potentials than the starting anilides. Direct electrolysis can also be employed to promote NCR formation and cyclizations but often requires an increase in oxidation potential from substrate to product.3942 Otherwise, further oxidation of the product can occur.43
image
Scheme 1.3 Electrocatalytic cyclization reactions via NCRs.
Aza-Wacker-type cyclization reac...

Inhaltsverzeichnis