The Calculus
eBook - ePub

The Calculus

A Genetic Approach

Otto Toeplitz

Compartir libro
  1. English
  2. ePUB (apto para móviles)
  3. Disponible en iOS y Android
eBook - ePub

The Calculus

A Genetic Approach

Otto Toeplitz

Detalles del libro
Vista previa del libro
Índice
Citas

Información del libro

When first published posthumously in 1963, this bookpresented a radically different approach to the teaching of calculus.In sharp contrast to the methods of his time, Otto Toeplitz did not teach calculus as a static system of techniques and facts to be memorized. Instead, he drew on his knowledge of the history of mathematics and presented calculus as an organic evolution of ideas beginning with the discoveries of Greek scholars, such as Archimedes, Pythagoras, and Euclid, and developing through the centuries in the work of Kepler, Galileo, Fermat, Newton, and Leibniz. Through this unique approach, Toeplitz summarized and elucidated the major mathematical advances that contributed to modern calculus.Reissued for the first time since 1981 and updated with a new foreword, this classic text in the field of mathematics is experiencing a resurgence of interest among students and educators of calculus today.

Preguntas frecuentes

¿Cómo cancelo mi suscripción?
Simplemente, dirígete a la sección ajustes de la cuenta y haz clic en «Cancelar suscripción». Así de sencillo. Después de cancelar tu suscripción, esta permanecerá activa el tiempo restante que hayas pagado. Obtén más información aquí.
¿Cómo descargo los libros?
Por el momento, todos nuestros libros ePub adaptables a dispositivos móviles se pueden descargar a través de la aplicación. La mayor parte de nuestros PDF también se puede descargar y ya estamos trabajando para que el resto también sea descargable. Obtén más información aquí.
¿En qué se diferencian los planes de precios?
Ambos planes te permiten acceder por completo a la biblioteca y a todas las funciones de Perlego. Las únicas diferencias son el precio y el período de suscripción: con el plan anual ahorrarás en torno a un 30 % en comparación con 12 meses de un plan mensual.
¿Qué es Perlego?
Somos un servicio de suscripción de libros de texto en línea que te permite acceder a toda una biblioteca en línea por menos de lo que cuesta un libro al mes. Con más de un millón de libros sobre más de 1000 categorías, ¡tenemos todo lo que necesitas! Obtén más información aquí.
¿Perlego ofrece la función de texto a voz?
Busca el símbolo de lectura en voz alta en tu próximo libro para ver si puedes escucharlo. La herramienta de lectura en voz alta lee el texto en voz alta por ti, resaltando el texto a medida que se lee. Puedes pausarla, acelerarla y ralentizarla. Obtén más información aquí.
¿Es The Calculus un PDF/ePUB en línea?
Sí, puedes acceder a The Calculus de Otto Toeplitz en formato PDF o ePUB, así como a otros libros populares de Matematica y Matematica generale. Tenemos más de un millón de libros disponibles en nuestro catálogo para que explores.

Información

Año
2018
ISBN
9780226806693
Categoría
Matematica
3
DIFFERENTIAL AND INTEGRAL CALCULUS
18. TANGENT PROBLEMS
Tangent problems are easier than area problems. The Greeks knew very well how to construct a tangent at a point P of a circle (Fig. 63) by drawing the perpendicular to the radius OP. In the case of the ellipse, the construction of the tangent ab rested on the theorem that the tangent at P forms equal angles with the two focal radii drawn from P (Fig. 64). Similarly, in the case of the hyperbola.
FIG. 63
FIG. 64
(The Greeks, in fact, treated many tangent problems. Archimedes in his treatise on the spiral29—the one which we still call the Spiral of Archimedes—deals with nothing else but the construction of the tangent and the calculation of the area of a sector of the spiral.)
When in modern times—meaning the first half of the seventeenth century—Greek mathematics was resumed, numerous new tangent problems were treated. But, because a curve was now understood as a geometrical representation of a computational expression, the method of dealing with tangent problems was changed, and a new element entered into them. For instance, in the case of the parabola, which is the geometric representation of the function y = x2, we find the tangent at the point E(1, 1) (Fig. 65). We take a value of x close to 1 and call it x1; the corresponding value of the function is y1 = x21. Let E1 be the point (x1, y1); let φ1 be the angle which the secant EE1 makes with the horizontal through E; then we have
And here is the new method that we wanted to introduce by the example. We regard the tangent as the limiting position of the secant EE1, which results when x1 approaches 1 indefinitely.
So much for the principle. With simple mathematical manipulation, we find
FIG. 65
FIG. 66
If x1 approaches 1, x1 + 1 approaches 2; this means that if φ is the angle between the tangent and the x-axis
tan φ = 2.
Thus, in the limit, the opposite side is exactly twice as long as the adjacent side. Hence we need not even draw the parabola to construct the tangent at E. We simply connect with E the midpoint of the segment with ends 0 and 1.
In the same way we find for any other x that, as x1 → x,
So, for
we have tan φ = 1 which means that the tangent at
is constructed by connecting
with
. For drawing the parabola, the knowledge of these two tangents is more useful than the plotting of many of its points (Fig. 66).
In Section 12 we saw how Fermat determined
Since
for x → 1, this becomes n + 1. This same principle gives the general construction of the tangent at any point of the curve y = xn. As x1 → x,
Next we introduce a new symbol and a new terminology. Quite generally we shall write
and call the value f′(x) the “derivative” of f at x. It is equal to tan φ where φ is the inclination to the x-axis of the tangent (Fig. 67).
FIG. 67
For these “derivatives” we shall now obtain some very general results, which correspond to the two principles of Cavalieri (see above, Sec. 13).
1. Let y = f(x) + g(x).
Then we have
which leads to
2. Let y = ρf(x).
Then we have
which leads to
3. For more than two summands these two results give
4. Applying this to the case
and considering that
we obtain
This means that we can draw tangents at every point of any curve c1x + c2x2 + . . . +cnxn.
Fermat, whose achievements in the theory of areas we discussed previously, was a master also in tangent problems. He knew fully how to handle them in situations like those above, as well as for many other curves; therefore, he is often said to have known differential calculus.
19. INVERSE TANGENT PROBLEMS
In contrast with area problems, those concerning tangents presented no difficulties, no matter what curves were taken, until the problem was inverted; that is, the tangent was given and the curve had to...

Índice