The Calculus
eBook - ePub

The Calculus

A Genetic Approach

Otto Toeplitz

Partager le livre
  1. English
  2. ePUB (adapté aux mobiles)
  3. Disponible sur iOS et Android
eBook - ePub

The Calculus

A Genetic Approach

Otto Toeplitz

DĂ©tails du livre
Aperçu du livre
Table des matiĂšres
Citations

À propos de ce livre

When first published posthumously in 1963, this bookpresented a radically different approach to the teaching of calculus.In sharp contrast to the methods of his time, Otto Toeplitz did not teach calculus as a static system of techniques and facts to be memorized. Instead, he drew on his knowledge of the history of mathematics and presented calculus as an organic evolution of ideas beginning with the discoveries of Greek scholars, such as Archimedes, Pythagoras, and Euclid, and developing through the centuries in the work of Kepler, Galileo, Fermat, Newton, and Leibniz. Through this unique approach, Toeplitz summarized and elucidated the major mathematical advances that contributed to modern calculus.Reissued for the first time since 1981 and updated with a new foreword, this classic text in the field of mathematics is experiencing a resurgence of interest among students and educators of calculus today.

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans paramĂštres et de cliquer sur « RĂ©silier l’abonnement ». C’est aussi simple que cela ! Une fois que vous aurez rĂ©siliĂ© votre abonnement, il restera actif pour le reste de la pĂ©riode pour laquelle vous avez payĂ©. DĂ©couvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptĂ©s aux mobiles peuvent ĂȘtre tĂ©lĂ©chargĂ©s via l’application. La plupart de nos PDF sont Ă©galement disponibles en tĂ©lĂ©chargement et les autres seront tĂ©lĂ©chargeables trĂšs prochainement. DĂ©couvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accĂšs complet Ă  la bibliothĂšque et Ă  toutes les fonctionnalitĂ©s de Perlego. Les seules diffĂ©rences sont les tarifs ainsi que la pĂ©riode d’abonnement : avec l’abonnement annuel, vous Ă©conomiserez environ 30 % par rapport Ă  12 mois d’abonnement mensuel.
Qu’est-ce que Perlego ?
Nous sommes un service d’abonnement Ă  des ouvrages universitaires en ligne, oĂč vous pouvez accĂ©der Ă  toute une bibliothĂšque pour un prix infĂ©rieur Ă  celui d’un seul livre par mois. Avec plus d’un million de livres sur plus de 1 000 sujets, nous avons ce qu’il vous faut ! DĂ©couvrez-en plus ici.
Prenez-vous en charge la synthÚse vocale ?
Recherchez le symbole Écouter sur votre prochain livre pour voir si vous pouvez l’écouter. L’outil Écouter lit le texte Ă  haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l’accĂ©lĂ©rer ou le ralentir. DĂ©couvrez-en plus ici.
Est-ce que The Calculus est un PDF/ePUB en ligne ?
Oui, vous pouvez accĂ©der Ă  The Calculus par Otto Toeplitz en format PDF et/ou ePUB ainsi qu’à d’autres livres populaires dans Matematica et Matematica generale. Nous disposons de plus d’un million d’ouvrages Ă  dĂ©couvrir dans notre catalogue.

Informations

Année
2018
ISBN
9780226806693
3
DIFFERENTIAL AND INTEGRAL CALCULUS
18. TANGENT PROBLEMS
Tangent problems are easier than area problems. The Greeks knew very well how to construct a tangent at a point P of a circle (Fig. 63) by drawing the perpendicular to the radius OP. In the case of the ellipse, the construction of the tangent ab rested on the theorem that the tangent at P forms equal angles with the two focal radii drawn from P (Fig. 64). Similarly, in the case of the hyperbola.
FIG. 63
FIG. 64
(The Greeks, in fact, treated many tangent problems. Archimedes in his treatise on the spiral29—the one which we still call the Spiral of Archimedes—deals with nothing else but the construction of the tangent and the calculation of the area of a sector of the spiral.)
When in modern times—meaning the first half of the seventeenth century—Greek mathematics was resumed, numerous new tangent problems were treated. But, because a curve was now understood as a geometrical representation of a computational expression, the method of dealing with tangent problems was changed, and a new element entered into them. For instance, in the case of the parabola, which is the geometric representation of the function y = x2, we find the tangent at the point E(1, 1) (Fig. 65). We take a value of x close to 1 and call it x1; the corresponding value of the function is y1 = x21. Let E1 be the point (x1, y1); let φ1 be the angle which the secant EE1 makes with the horizontal through E; then we have
And here is the new method that we wanted to introduce by the example. We regard the tangent as the limiting position of the secant EE1, which results when x1 approaches 1 indefinitely.
So much for the principle. With simple mathematical manipulation, we find
FIG. 65
FIG. 66
If x1 approaches 1, x1 + 1 approaches 2; this means that if φ is the angle between the tangent and the x-axis
tan φ = 2.
Thus, in the limit, the opposite side is exactly twice as long as the adjacent side. Hence we need not even draw the parabola to construct the tangent at E. We simply connect with E the midpoint of the segment with ends 0 and 1.
In the same way we find for any other x that, as x1 → x,
So, for
we have tan φ = 1 which means that the tangent at
is constructed by connecting
with
. For drawing the parabola, the knowledge of these two tangents is more useful than the plotting of many of its points (Fig. 66).
In Section 12 we saw how Fermat determined
Since
for x → 1, this becomes n + 1. This same principle gives the general construction of the tangent at any point of the curve y = xn. As x1 → x,
Next we introduce a new symbol and a new terminology. Quite generally we shall write
and call the value fâ€Č(x) the “derivative” of f at x. It is equal to tan φ where φ is the inclination to the x-axis of the tangent (Fig. 67).
FIG. 67
For these “derivatives” we shall now obtain some very general results, which correspond to the two principles of Cavalieri (see above, Sec. 13).
1. Let y = f(x) + g(x).
Then we have
which leads to
2. Let y = ρf(x).
Then we have
which leads to
3. For more than two summands these two results give
4. Applying this to the case
and considering that
we obtain
This means that we can draw tangents at every point of any curve c1x + c2x2 + . . . +cnxn.
Fermat, whose achievements in the theory of areas we discussed previously, was a master also in tangent problems. He knew fully how to handle them in situations like those above, as well as for many other curves; therefore, he is often said to have known differential calculus.
19. INVERSE TANGENT PROBLEMS
In contrast with area problems, those concerning tangents presented no difficulties, no matter what curves were taken, until the problem was inverted; that is, the tangent was given and the curve had to...

Table des matiĂšres